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ABSTRACT
We propose a theoretically-founded method to
learn maximum excluding balls in the context of
unbalanced binary classification. The objective is
to learn a set of local balls centered at the minor-
ity class examples which exclude the examples of
the majority class. Our contribution is twofold:

1) we address this problem from a metric
learning point of view [2],

2) we derive generalization guarantees on the
radius of the sphere and the learned metric
using the uniform stability framework [3]

Our experimental evaluation on classic bench-
marks shows the effectiveness of our approach.

ILLUSTRATION

From excluding ball to learned excluding ellipsoid
⇒ The Maximum Excluding Ellipsoids (ME2) algorithm
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The Dual Problem gives an explicit expression of
both the Radius and the Metric:
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This expression directly shows that M is PSD.

THEORETICAL BOUND

Definition: A learning algorithm has a uniform sta-
bility in γ

n w.r.t. a loss function ` and a parameter set
θ, with γ a positive constant if:

∀S, ∀i, 1 ≤ i ≤ n, sup
x
|`(θS ,x)− `(θSi ,x)| ≤ γ

n
.

Theorem: Let δ > 0 and n > 1. There exists a
constant κ > 0, such that with probability at least
1 − δ over the random draw over S, we have for any
(M, R) solution of Problem (1):
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RESULTS

Algo.
Data Abalone Abalone17 Yeast6 Abalone20 Abalone19

10.7% 2.5% 2.4% 1.4% 0.76%
RF (10 trees) 0.67 0.20 0.04 0.00 0.00

DT (simple version) 0.71 0.00 0.00 0.00 0.00
DTO (oversampling) 0.67 0.35 0.09 0.018 0.02
DTU (undersampling) 0.69 0.33 0.09 0.18 0.00

DTOU (both) 0.62 0.31 0.17 0.15 0.04
LSVM 0.62 0.29 0.15 0.21 0.04

RBFSVM 0.63 0.17 0.09 0.00 0.00
ME2 0.62 0.37 0.26 0.21 0.04

Comparison in terms of F-
Measure with some state of
the art algorithms.
Datasets are ordered w.r.t.
to an increasing imbalance
ratio. The same global
weight is given to both
classes to learn the LSVM
and RBF-SVM.

Effectiveness of ME2 when the disequilibrium increases. We can note that some of the state of the art
methods lead to a null F-Measure.

METHOD
We learn a PSD matrix M of a Mahalanobis-
distance defined as follows:

‖x− c‖2M = (x− c)TM(x− c).

min
R,M ,ξ

1

n

∑n
i=1 ξi + µ(B −R)2 + λ‖M − I‖2F

s.t. ‖xi − c‖2M ≥ R− ξi, ∀i = 1, , n,
ξi ≥ 0,
B ≥ R ≥ 0,

(1)
where,

• B is the bound of the radius,

• µ controls the size of the ellipsoid,

• λ controls the distortion w.r.t. an Euclidean
ball.

CONCLUSION
The ME2 algorithm presents the following advan-
tages:

• Captures non linearity via local linear models

• Theoretically founded (uniform stability)

• Models can be learned in parallel

• Promising results in unbalanced scenarios

Perspective: study the link between the stability of
the ellipsoids and the generalization error of a Near-
est Neighbor algorithm.


