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The Minimum Including Ball Problem
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Hard Inclusion (⇠i = 0) Soft Inclusion (⇠i � 0)

Center of the ball

min
c,R

R2 +
µ

n

nX

i=1

⇠i

s.t. kxi � ck  R2 + ⇠i, 8i = 1, ..., n

Given a set of n unlabelled points, find the center c and the smallest

radius R of the ball that includes the data. [Tax & Duin (2004)]

Support Vector
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MEB and One class SVM

c, ⇠i, ⇢
min

1

2
kck2 + 1

⌫n

Pn
i=1 ⇠i � ⇢� 1

2
kxik2

s.t. c

T
xi � ⇢+

1

2
kxik2 � ⇠i

⇠i � 0

is equivalent
Belonging in the sphere

being over the hyperplane

when kxik is constant

Hyperplane

O

c
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Anomaly / Fraud detection: towards a Maximum 
Excluding Ball problem 

Classifier

Maximizing the accuracy is  inappropriate. 
More relevant criteria:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F� =
(1 + �

2)Precision ·Recall

�

2 · Precision ·Recall



A Metric Learning-based approach 

From excluding balls to learned excluding ellipsoids

) The Maximum Excluding Ellipsoid (ME2
) algorithm
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Key Properties of ME2

• center of ellipsoids no more learned (positive data)

• negative examples used to learn ellipsoids

• one ellipsoid per positive instance

• use of a Mahalanobis like metric learning approach:

kx� ck2M = (x� c)TM(x� c)

s.t. M is PSD.

ME2
comes with a cheap way to get the positive definiteness

of M.



7

min
R,M,⇠

1

n

nX

i=1

⇠i + µ(B �R)2 + �kM� Ik2F ,

s.t. kxi � ck2M � R� ⇠i, 8i = 1, ..., n,

⇠i � 0,

B � R � 0.

The ME2
Algorithm

Given a set of n negative and p positive examples i.i.d.

according to a joint distribution D over Rd ⇥ {�1,+1}.
For all positive example c:

controls ellipsoid’s sized⇥ d matrix

radius of the ellipsoid

slack variables

BR
M
⇠

µ

� controls distortion w.r.t.

to a ball

bound on ellipsoid’s size
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Dual Formulation

min
↵,�,�

↵T

✓
1

4�
G0 +

1

4µ
Ud⇥d

◆
↵+

�2

4µ
+

�2

4µ
+

↵T

✓
diag(G)�

✓
B +

�

2µ
� �

2µ

◆
Ud

◆
+ �

✓
B � �

2µ

◆
,

s.t. 0  ↵i 
1

n
, 8i = 1, ..., n,

�, � � 0,

where G is the Gram matrix and G0 is the Hadamard product of G with
itself. Ud (respectively Ud⇥d) represents a vector of length d (respectively a
matrix of size d⇥ d) where entries are equal to 1.
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About the Dual Formulation

• Easier to solve, only depends on the number of positive instances.

• Gives an explicit expression of both Radius R and Similarity M

R =

� � � + 2µB �
Pn

i=1 ↵i

2µ

M = I+

1

2�

nX

i=1

↵i(xi � c)(xi � c)

T

• Last equality shows that M is PSD.



Theoretical Guarantees derived
from ME2

10



Theoretical Results

Definition

Let � > 0 and n > 1. For any algorithm with uniform stability �/n, using a

loss function bounded by K, with probability 1� � over the random draw of S:

L(✓S)  ˆLS(✓S) +
2�

n
+ (4� +K)

r
ln 1/�

2n
,

where L(·) is the true risk and

ˆLS(·) its empirical estimate over S.

Theorem

A learning algorithm has a uniform stability in

�
n respect to a loss function

` and a parameter set ✓, with � a positive constant if:

8S, 8i, 1  i  n, sup

x

|`(✓S ,x)� `(✓Si ,x)|  �

n
.
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where Si
corresponds to S after the replacement of one example drawn

according to D.

Uniform Stability [O.Bousquet & A.Elissee↵ (2002)]
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L̂S(M, R) =
1

n

nX

i=1

`(M, R,xi)

Hinge Loss Version of ME2

min
R,M

nX

i=1

`(R,M,xi) + µ(B �R)2 + �kM� Ik2F ,

s.t. B � R � 0.

True risk L and its empirical estimate

ˆLS over the sample are defined by:

L(M, R) = E
x⇠D`(M, R,x)

Using a hinge loss `(M, R,x) =
1

n
[R� kxi � ck2M]+

the problem can be rewritten as follow:



Let � > 0 and n > 1. There exists a constant  > 0, such that with

probability at least 1� � over the random draw over S, we have for any (M, R)

solution of our optimization problem:

L(M, R)  ˆLS(M, R)+

4max(1, 4B2
)

nmin(µ,�)
+

 
8max(1, 4B2

)

min(µ,�)
+B + 4B2

r
µB2

�
+ d

!r
ln 1/�

2n

Theorem
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Generalization Guarantee on ME2

with � =
2

min(µ,�)
(max(1, 4B2))2

and K = B + 4B2

r
µB

2

�

+ d.



Experimental Results
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A neighborhood based decision rule

test data

At test time, a data is assigned to its nearest center



16

A neighborhood based decision rule
Label prediction

ME2 tends to maximize the F-Measure

positive

negative

negative
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Experimental Comparison

• Decision Tree without pruning

• Decision Tree with sampling methods:

– Oversampling: number of positives ⇥5

– Undersampling: number of negatives divided by 2

– Both: combine the two previous

• Random Forest with 10 trees

• SVM with Linear Kernel

• SVM with Gaussian Kernel
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Experimental Comparison

Datasets Abalone Wine Abalone17 Abalone20 Abalone19

Rate of pos. examples 10.7% 3.3% 2.5% 1.4% 0.76%

Performance is evaluated with respect to the F-Measure

Algorithm Abalone Wine Abalone17 Abalone20 Abalone19

RF 0.67 0.02 0.20 0.00 0.00

DT 0.71 0.00 0.00 0.00 0.00

DTO 0.67 0.06 0.35 0.018 0.02

DTU 0.69 0.08 0.33 0.18 0.00

DTOU 0.62 0.08 0.31 0.15 0.04

LSVM 0.62 0.09 0.29 0.21 0.04

RBFSVM 0.63 0.16 0.17 0.00 0.00

ME2
0.62 0.16 0.37 0.21 0.04
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Comparaison w.r.t. a decreasing nb. of positives
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Conclusion

• Capture non linearity via local models

• ME2
is theoretically founded (uniform stability)

• Models can be learned in parallel

• Promising results in unbalanced scenarios

Theoretical Perspective: study the link between the stability of the

ellipsoids and the generalization error of Nearest Neighbor algorithm.
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Thank you for your attention!


