Learning Maximum Excluding Ellipsoids In Unbalanced Scenarios With Theoretical Guarantees

G.Metzler^{1,2}, X.Badiche², B.Belkasmi², S.Canu³, E.Fromont¹, A.Habrard¹ and M.Sebban¹

> 1. Univ. Lyon, Univ. St-Etienne F-42000, UMR CNRS 5516, Laboratoire Hubert-Curien

> > 2. BLITZ BUSINESS SCEB, 38090 Villefontaine

3. LITIS EA 4108, Univ. Rouen 76800 St-Etienne du Rouvray

CAP 2017 - Grenoble

The Minimum Including Ball Problem

Given a set of n unlabelled points, find the center c and the smallest radius R of the ball that includes the data. [Tax & Duin (2004)]

$$\min_{\mathbf{c},R} \quad R^2 + \frac{\mu}{n} \sum_{i=1}^n \xi_i$$

s.t. $\|\mathbf{x}_i - \mathbf{c}\| \le R^2 + \xi_i, \ \forall i = 1, ..., n$

Hard Inclusion $(\xi_i = 0)$

Soft Inclusion $(\xi_i \ge 0)$

MEB and One class SVM

Anomaly / Fraud detection: towards a Maximum Excluding Ball problem

Classifier

A Metric Learning-based approach

From excluding balls to learned excluding ellipsoids \Rightarrow The Maximum Excluding Ellipsoid (ME^2) algorithm

Key Properties of ME²

- center of ellipsoids no more learned (positive data)
- negative examples used to learn ellipsoids
- one ellipsoid per positive instance
- use of a Mahalanobis like metric learning approach:

$$\|\mathbf{x} - \mathbf{c}\|_{\mathbf{M}}^2 = (\mathbf{x} - \mathbf{c})^T \mathbf{M} (\mathbf{x} - \mathbf{c})$$

s.t. **M** is **PSD**. ME^2 comes with a cheap way to get the positive definiteness of **M**.

The ME^2 Algorithm

Given a set of n negative and p positive examples i.i.d. according to a joint distribution \mathcal{D} over $\mathbb{R}^d \times \{-1, +1\}$. For all positive example c:

$$\min_{\substack{R,\mathbf{M},\xi\\R,\mathbf{M},\xi}} \frac{1}{n} \sum_{i=1}^{n} \xi_{i} + \mu (B-R)^{2} + \lambda \|\mathbf{M} - \mathbf{I}\|_{F}^{2}$$
s.t.
$$\|\mathbf{x}_{i} - \mathbf{c}\|_{\mathbf{M}}^{2} \ge R - \xi_{i}, \quad \forall i = 1, ..., n,$$

$$\xi_{i} \ge 0,$$

$$B \ge R \ge 0.$$

- R radius of the ellipsoid
- $\mathbf{M} \quad d \times d \text{ matrix}$
- ξ slack variables

- B bound on ellipsoid's size
- μ controls ellipsoid's size
 - controls distortion w.r.t.to a ball

Dual Formulation

$$\begin{split} \min_{\alpha,\beta,\delta} & \alpha^T \left(\frac{1}{4\lambda} \mathbf{G}' + \frac{1}{4\mu} \mathbf{U}_{d \times d} \right) \alpha + \frac{\beta^2}{4\mu} + \frac{\delta^2}{4\mu} + \\ & \alpha^T \left(diag(\mathbf{G}) - \left(B + \frac{\beta}{2\mu} - \frac{\delta}{2\mu} \right) \mathbf{U}_d \right) + \beta \left(B - \frac{\delta}{2\mu} \right), \\ s.t. & 0 \le \alpha_i \le \frac{1}{n}, \quad \forall i = 1, ..., n, \\ & \beta, \delta \ge 0, \end{split}$$

where **G** is the Gram matrix and **G'** is the Hadamard product of **G** with itself. \mathbf{U}_d (respectively $\mathbf{U}_{d\times d}$) represents a vector of length d (respectively a matrix of size $d \times d$) where entries are equal to 1.

About the Dual Formulation

- Easier to solve, only depends on the number of positive instances.
- Gives an explicit expression of both Radius R and Similarity \mathbf{M}

$$R = \frac{\beta - \delta + 2\mu B - \sum_{i=1}^{n} \alpha_i}{2\mu}$$

$$\mathbf{M} = \mathbf{I} + \frac{1}{2\lambda} \sum_{i=1}^{n} \alpha_i (\mathbf{x}_i - \mathbf{c}) (\mathbf{x}_i - \mathbf{c})^T$$

• Last equality shows that M is **PSD**.

Theoretical Guarantees derived from ME²

Theoretical Results

Uniform Stability [O.Bousquet & A.Elisseeff (2002)]

Definition

A learning algorithm has a uniform stability in $\frac{\beta}{n}$ respect to a loss function ℓ and a parameter set θ , with β a positive constant if:

$$\forall S, \ \forall i, \ 1 \le i \le n, \ \sup_{\mathbf{x}} |\ell(\theta_S, \mathbf{x}) - \ell(\theta_{S^i}, \mathbf{x})| \le \frac{\beta}{n}$$

where S^i corresponds to S after the replacement of one example drawn according to \mathcal{D} .

Theorem

Let $\delta > 0$ and n > 1. For any algorithm with uniform stability β/n , using a loss function bounded by K, with probability $1 - \delta$ over the random draw of S:

$$L(\theta_S) \le \hat{L}_S(\theta_S) + \frac{2\beta}{n} + (4\beta + K)\sqrt{\frac{\ln 1/\delta}{2n}},$$

where $L(\cdot)$ is the true risk and $\hat{L}_S(\cdot)$ its empirical estimate over S.

Hinge Loss Version of ME²

Using a hinge loss $\ell(\mathbf{M}, R, \mathbf{x}) = \frac{1}{n} [R - \|\mathbf{x}_i - \mathbf{c}\|_{\mathbf{M}}^2]_+$ the problem can be rewritten as follow:

$$\min_{\substack{R,\mathbf{M}\\R,\mathbf{M}}} \sum_{i=1}^{n} \ell(R,\mathbf{M},\mathbf{x}_i) + \mu(B-R)^2 + \lambda \|\mathbf{M} - \mathbf{I}\|_F^2,$$

$$s.t. \quad B \ge R \ge 0.$$

True risk L and its empirical estimate \hat{L}_S over the sample are defined by:

$$L(\mathbf{M}, R) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \ell(\mathbf{M}, R, \mathbf{x}) \quad \hat{L}_S(\mathbf{M}, R) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{M}, R, \mathbf{x}_i)$$

Generalization Guarantee on ME²

Theorem

Let $\delta > 0$ and n > 1. There exists a constant $\kappa > 0$, such that with probability at least $1 - \delta$ over the random draw over S, we have for any (\mathbf{M}, R) solution of our optimization problem:

$$L(\mathbf{M}, R) \le \hat{L}_S(\mathbf{M}, R) + \frac{4\max(1, 4B^2)}{n\kappa\min(\mu, \lambda)} + \left(\frac{8\max(1, 4B^2)}{\kappa\min(\mu, \lambda)} + B + 4B^2\sqrt{\frac{\mu B^2}{\lambda}} + d\right)\sqrt{\frac{\ln 1/\delta}{2n}}$$

with
$$\beta = \frac{2}{\kappa min(\mu, \lambda)} (max(1, 4B^2))^2$$

and $K = B + 4B^2 \sqrt{\frac{\mu B^2}{\lambda} + d}$.

Experimental Results

A neighborhood based decision rule

At test time, a data is assigned to its nearest center

A neighborhood based decision rule

Label prediction

ME² tends to maximize the F-Measure

Experimental Comparison

- Decision Tree without pruning
- Decision Tree with sampling methods:
 - Oversampling: number of positives $\times 5$
 - Undersampling: number of negatives divided by 2
 - Both: combine the two previous
- Random Forest with 10 trees
- SVM with Linear Kernel
- SVM with Gaussian Kernel

Experimental Comparison

Algorithm	Abalone	Wine	Abalone17	Abalone20	Abalone19
RF	0.67	0.02	0.20	0.00	0.00
DT	0.71	0.00	0.00	0.00	0.00
DT_O	0.67	0.06	0.35	0.018	0.02
DT_U	0.69	0.08	0.33	0.18	0.00
DT_{OU}	0.62	0.08	0.31	0.15	0.04
LSVM	0.62	0.09	0.29	0.21	0.04
RBFSVM	0.63	0.16	0.17	0.00	0.00
$\overline{ME^2}$	0.62	0.16	0.37	0.21	0.04

Performance is evaluated with respect to the F-Measure

Datasets	Abalone	Wine	Abalone17	Abalone20	Abalone19
Rate of pos. examples	10.7%	3.3%	2.5%	1.4%	0.76%

Comparaison w.r.t. a decreasing nb. of positives

Conclusion

- Capture non linearity via local models
- ME^2 is theoretically founded (uniform stability)
- Models can be learned in parallel
- Promising results in unbalanced scenarios

Theoretical Perspective: study the link between the stability of the ellipsoids and the generalization error of Nearest Neighbor algorithm.

Thank you for your attention!