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The Minimum Including Ball Problem

Given a set of n unlabelled points, find the center ¢ and the smallest
radius R of the ball that includes the data. [Tax & Duin (2004)
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MEB and One class SVM
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Anomaly / Fraud detection: towards a Maximum
Excluding Ball problem

Classifier e o

Maximizing the accuracy Iis inappropriate.




A Metric Learning-based approach




Key Properties of ME?

e center of ellipsoids no more learned (positive data)
e negative examples used to learn ellipsoids

e one ellipsoid per positive instance

e use of a Mahalanobis like metric learning approach:




The ME? Algorithm

Given a set of n negative and p positive examples i.i.d.
according to a joint distribution D over R x {—1, +1}.
For all positive example c:
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Dual Formulation
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About the Dual Formulation

e EHasier to solve, only depends on the number of positive instances.

e (Gives an explicit expression of both Radius R and Similarity M
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Theoretical Guarantees derived
from ME?




Theoretical Results
Uniform Stability [O.Bousquet & A.Elisseeff (2002)]

Definition

A learning algorithm has a uniform stability in g respect to a loss function

¢ and a parameter set 6, with 3 a positive constant if:
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where S* corresponds to S after the replacement of one example drawn
according to D.




Hinge Loss Version of ME?

1
Using a hinge loss £(M, R, x) = E[R — |Ix; — c|l34]+

the problem can be rewritten as follow:
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Generalization Guarantee on ME?

Theorem

Let 0 > 0 and n > 1. There exists a constant x > 0, such that with
probability at least 1 — ¢ over the random draw over S, we have for any (M, R)
solution of our optimization problem:
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Experimental Results
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A neighborhood based decision rule

At test time, a data is assigned to its nearest center




A neighborhood based decision rule

Label prediction




Experimental Comparison

e Decision Tree without pruning
e Decision Tree with sampling methods:

— Oversampling: number of positives x5

— Undersampling: number of negatives divided by 2
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Experimental Comparison

Algorithm | Abalone | Wine | Abalonel7 | Abalone20 | Abalonel9
RF 0.67 0.02 0.20 0.00 0.00
DT 0.71 0.00 0.00 0.00 0.00
DTo 0.67 0.06 0.35 0.018 0.02
DTy 0.69 0.08 0.33 0.18 0.00
DToy 0.62 0.08 0.31 0.15 0.04
LSVM 0.62 0.09 0.29 0.21 0.04
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F-Measure
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Comparaison w.r.t. a decreasing nb. of positives

F-Measure
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Conclusion

e Capture non linearity via local models
e ME? is theoretically founded (uniform stability)

e Models can be learned in parallel

e Promising results in unbalanced scenarios




Thank you for your attention!




