
CONE : Un algorithme d’optimisation de la F-Mesure par

pondération des erreurs de classification

Kévin Bascol1,2, Rémi Emonet2, Elisa Fromont3, Amaury Habrard2, Guillaume Metzler2,4,
and Marc Sebban2

1Bluecime inc., France
2Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire

Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
3Univ. Rennes 1, IRISA/Inria, 35042 Rennes cedex, France

4Blitz inc., France

14 juin 2018

Résumé

Nous proposons un algorithme d’optimisation de la
F-Mesure avec des garanties théoriques utilisable avec
toute méthode d’apprentissage par pondération des er-
reurs. CONE, notre algorithme, génère itérativement
un ensemble de coûts à partir de l’ensemble d’en-
trâınement de telle sorte que le classifieur final ait
une F-Mesure proche de l’optimale. L’optimalité de la
F-Mesure obtenue est exprimée à l’aide d’une borne
supérieure plus fine que celle présentée dans [Param-
bath et al. 2014] De plus, nous montrons que les coûts
obtenus à chaque itération de CONE permettent de
réduire drastiquement l’espace de recherche et ainsi de
converger rapidement vers les paramètres optimaux.
L’efficacité de notre méthode est montrée à la fois en
terme de F-Mesure mais aussi de vitesse de convergence
sur plusieurs jeux de données déséquilibrés.

Mots-clef : Algorithm, Supervised Learning, Theory.

1 Introduction

The Fβ-measure [vR74] is a performance measure
used in classification to evaluate the ability of a classi-
fier to predict the labels of new instances with a good
recall and a good precision (as an harmonic mean of
these two measures). It is the most commonly used
measure in imbalanced settings where optimizing the
accuracy of the classifier would greatly favor the majo-
rity class [CBK09, LFG+13]. The β parameter of the
measure controls the relative weights of the precision
and the recall. For β < 1 (resp. β > 1), more im-
portance is given to the precision (resp. recall), with
β = 1, they are considered equally important. The Fβ-
measure can be expressed in terms of the true positive

rate and true negative rate of the model. These rates
are count-based measures which, in addition to its non
convexity, makes the Fβ-measure unsuitable for direct
optimization [NKJ15].

Several methods have been studied to solve the Fβ-
measure optimization problem. They can roughly be
separated into two categories : the ones that optimize
a “simpler” surrogate function (e.g., [Jan05, PCM13,
DWCH11]) such as a loss based on maximizing the Ex-
pected Utility [Jan05], and the ones that learn multiple
accurate models with different parameters and keep
the model which maximizes the F-measure [MKO+03,
BFSDH15, ZEPB13, PUG14, Joa05]. In this second ca-
tegory, the parameters can be costs on the classification
errors (cost-sensitive methods) [MKO+03, PUG14]
or different classification thresholds for probabilistic
models [ZEPB13, Joa05, BFSDH15]. [YCLC12] have
shown that both categories of methods give the same
results asymptotically and propose heuristics to decide
on the category to use depending on the context.

The work presented in this paper falls into the second
category and within the cost-sensitive classification-
based methods. By taking into account misclassifica-
tion costs, cost-sensitive learning aims at dealing with
problems induced by class imbalanced datasets. We
build upon the work presented in [PUG14] which is
one of the few recent papers addressing the F-measure
optimization from a theoretical point of view (see also
[BFSDH15, ZEPB13]). The authors proposed a grid-
based approach to find the optimal costs for which a
cost-sensitive classifier would give the best F-measure.
They proved theoretically that with a sufficiently pre-
cise grid, they can approach the optimal F-measure up
to a bound that depends only on the optimality of the
learned classification model. In this paper, we go much
further than [PUG14] from both the algorithmic and

1



the theoretical points of view. Our contributions are
four-fold :
• we give a geometric interpretation of the theo-

retical guarantees derived in [PUG14]. They can
be represented as exempting/unreachable cones
in a 2D space where the x-axis gives the value
of a parameter t that controls the relative class
costs, and the y-axis gives the F-measure of the
corresponding cost-sensitive classifier ;

• rather than testing exhaustively the whole grid,
we take advantage of those cones to propose an
iterative algorithm – called CONE – which uses
this 2D parameter space to select which class
weights t should be tested at every step ;

• we show that, in practice, the proposed bound
from [PUG14] is loose and would require a huge
number of grid points on t to provide guarantees ;

• we then provide a new tighter theoretical bound
by refining the one from [PUG14] and we derive
additional constraints allowing our iterative algo-
rithm to drastically prune the search space.

In Section 2, we present our notations and the main
results from [PUG14] which are the starting point of
our study. Section 3 presents our visual optimality-
analysis tool to iteratively choose with our algorithm
CONE, costs that lead to a near-optimal F-measure.
We also derive our tighter bound on the optimal F-
measure. Section 4 is devoted to the experiments on
benchmark real datasets to prove the efficiency and
the effectiveness of the proposed method. We finally
conclude in Section 5.

2 Notations and context

Let X = (x1, ..., xm), where xi ∈ Rn, be the set of
m training instances. We denote by L the number of
classes, so that S = {(xi, yi) ∈ Rn×{1, ..., L}} denotes
our training sample. Let H be a family of hypothesis
(e.g., linear separators). The following definitions are
taken from [PUG14] which is the starting point of our
work.

For a given hypothesis h ∈ H learned from X, the
errors that h makes can be summarized in an error
profile defined as E(h) ∈ R2L :

E(h) = (FN1(h), FP1(h), ..., FNL(h), FPL(h))

where FNi(h) (resp. FPi(h)) is the proportion of False
Negative (resp. False Positive) that h yields for class
i. We then denote as E(H) the set of all possible error
profiles for a given set of hypotheses, and more preci-
sely its closure : E(H) = cl ({E(h), h ∈ H}).

Intuitively, an element e is in E(H) if there exists an
hypothesis h ∈ H that yields these proportions of false
negatives and false positives.

We additionally introduce a function a : [0, 1] 7→ RL
which sets the cost of the different types of misclas-

sification. The function a is given below and depends
on the final measure that we want to optimize and the
considered setting (either binary or multiclass classifi-
cation). In the following, the F-Measure for any value
of β will be denoted by Fβ or simply F .

2.1 The binary classification setting

In a binary setting, P is the number of positive ins-
tances andN the number of negative examples. We also
denote by e the vector (e1, e2) where e1 and e2 are res-
pectively the number of False Negative examples and
the number of False Positive ones.

The Fβ-Measure, Fβ(e) is defined by :

Fβ(e) =
(1 + β2)(P − e1)

(1 + β2)P − e1 + e2
. (1)

and [PUG14] have shown that the function a that as-
signs the misclassification costs can be defined as :
a(t) =

(
1 + β2 − t, t

)
with t ∈ [0, 1]

2.2 The multiclass classification setting

We now consider a classification setting with L
classes where Pk, k = 1, ..., L is the number of examples
in class k. Given a reference class (taken as class 1), the
vector e = (e1, ..., e2L) denotes the proportions of mis-
classified examples, more precisely e1 is the proportion
of False Positives and e2k−1, k = 2, ..., L is the propor-
tion of False Negatives in class k. Then the multiclass-
micro F-Measure, mcFβ(e) is defined by :

mcFβ(e) =
(1 + β2)(1− P1 −

∑L
k=2 e2k−1)

(1 + β2)(1− P1)−
∑L
k=2 e2k−1 + e1

. (2)

Moreover, the function a that assigns the misclassifi-
cation costs is shown by [PUG14] to be defined as, for
all t ∈ [0, 1] :

a(t) =

{
1 + β2 − t for e2k−1, k = 2, ..., L

t for e1.

2.3 Base Results

We recall two main results from [PUG14].

Proposition 1. [Proposition 4 [PUG14]] Let F ? =
max

e′∈E(H)
F (e′). We have : e ∈ argmin

e′∈E(H)

〈a(F ?), e′〉 ⇐⇒

F (e) = F ?.

Proposition 1 states that a(F ?) are the costs that
should be assigned to the error profile in order to
find the F-optimal classifier in the class of hypothe-
sis H. Hence, maximizing F amounts to minimizing
〈a(F ?), e′〉 with respect to h ∈ H, that amounts to
solving a cost-sensitive classification problem.

2



Proposition 2. [Proposition 5 [PUG14]] Let ε0 ≥ 0
and ε1 ≥ 0, and assume that there exists Φ > 0 such
that for all e, e′ satisfying F (e′) > F (e), we have :

F (e′)− F (e) ≤ Φ〈a(F (e′)), e− e′〉. (3)

Then , let us take e? ∈ argmax F (e′) and denote
a? = a(F (e?)). Let furthermore g ∈ Rd+ and h ∈ H
satisfying the following two conditions :

(i) ‖g−a?‖2 ≤ ε0, (ii)〈g,E(h)〉 ≤ min
e′∈E(H)

〈g, e′〉+ε1.

We have :

F (E(h)) ≥ F (e?)−Φ(2ε0M + ε1), M = max
e′∈E(H)

‖e′‖2,

(4)
where F (e?) is the optimal value of the F-Measure.

Proposition 2 states that having near-optimal costs
(up to ε0) is sufficient to have a near-optimal (up to
Φ(2ε0M+ε1)) F-measure. The value of the constant Φ

is given in [PUG14] : it is equal to
1

β2P
in the binary

case and to
1

β2
∑L
k=1 Pk

in the multiclass context. Le-

veraging Equation 4 and the Lipschitz-continuity of the
function a (with a constant of 2, that we refine in Sec-
tion 3.3), [PUG14] design a meta-algorithm : learning
different cost-sensitive classifiers using a grid on t va-
lues, with step ε0

2 , gives a sub-optimality in F-measure
that is inferior to Φ(2ε0M + ε1).

In Figure 1 (left), we give an original geometric in-
terpretation of this result in the 2-D space where t is
the x-axis and F is the y-axis. In this (t, F ) graph, the
previous near-optimality result yields an upper cone of
values where F ? cannot be found. Given ε1, the sub-
optimality of the cost-sensitive learning algorithm for
the 0/1 loss (i.e., the learning bias), Φε1 corresponds
to the vertical offset of this cone. The symmetric slope
of this cone is 2ΦMε0

ε0/2
= 4ΦM .

Note that this geometric interpretation in the form
of cones will play a key role in the rest of this paper.

In terms of t, Equation 4 and the Lipschitz-
continuity of a can be combined in the following bound
(that we refine in Section 3.2), representing the effec-
tive cone :

F (e?) ≤ F (E(h)) + 4ΦM‖t− t?‖2 + Φε1

3 Contributions

In this section, we introduce three contributions : an
iterative algorithm for searching the parameter space
of a cost-sensitive classifier, a tighter bound to improve
this algorithm and an additional constraint that prunes
the search space.

Figure 1 – Illustration of the geometric interpreta-
tion of the existing bounds on the optimal F-measure
(left) and of the proposed CONE algorithm after 3
iterations (right). Filled cones (resp. lighter horizontal
areas) represent the unreachable area due to the bound
from Section 2 and 3.2 (resp. 3.3).

3.1 CONE Algorithm

In Section 2, we gave an interpretation of the bound
as a cone of unreachable values in the (t, F ) space. We
leverage this interpretation to design CONE (Cone-
based Optimal Next Evaluation), an iterative algo-
rithm that wraps a cost-sensitive classification algo-
rithm (e.g., a weighted SVM). At every iteration i,
CONE proposes a new value ti to be used by the cost-
sensitive algorithm. CONE is described in Algo. 1,
illustrated in Fig. 1 (right) and is explained below.

The choice of ti is based on the area Zi−1 which we
define as the union of all cones obtained from previous
iterations. ti is chosen to reduce the maximum value
of F for which (t, F ) is not in any previous cone. To
achieve this goal, CONE selects a t which maximizes
Fmax(t) = max{F, (t, F ) /∈ Zi−1}. The cost sensitive
classification algorithm then provides a new value of
Fi obtained from cost ti, which is used to refine the
unreachable area as Zi = Zi−1 ∪ Vi, where Vi is the
cone corresponding to (ti, Fi). In the case where there
are multiple values of t that maximize Fmax(t) (e.g.,
at the beginning, or when some range of t values yield
F = 1), CONE selects as ti the middle of the widest
range (see Fig. 1).

From a practical perspective, Zi can be represented
as a very dense grid (a discretization of [0, 1 + β2] ×
[0, 1], the (t, F ) space) of binary values or as a set of
linear constraints. The stopping criterion shouldStop
can take different forms including a fixed number of
iterations, or rules on the current best F-measure and
the current upper bound maxt Fmax(t).

For the CONE algorithm to be significantly more
efficient than a grid search on t, the cones need to be
as spread as possible (the bound as tight as possible).
In the next section, we derive a tight bound on the
cone slope, which makes the algorithm more efficient
as shown in Fig. 2.

3



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

Figure 2 – Unreachable region obtained from the same 19 (ti, Fi) points : on the left, cones from the bound
from [PUG14] ; in the middle, cones from our tighter bound presented in Section 3.2 ; on the right, with the
pruning constraints from Section 3.3. For an easier comparison, the points are equally spaced and are the same
for the three graphs (none are obtained with our iterative algorithm).

Algorithm 1 CONE

Input : β, training set S,
Input : cost-sensitive learning algorithm wLearn,
Input : stopping criterion shouldStop.
Initialize i = 0.
Initialize Z0 = ∅.
repeat
i = i+ 1
ti = findNextT (Zi−1)
classifieri = wLearn(1 + β2 − ti, ti)
Fi = Fβ(classifieri, S)
Vi = unreachableZone(ti, Fi, S)
Zi = Zi−1 ∪ Vi

until shouldStop(i, classifieri,Zi)

3.2 A tighter bound for the Optimal F-
Score

To increase the spread of the exempting cones (i.e.,
lower their slope), we propose a tighter bound on the
optimal F-Measure than the one given in Proposition 2.

Lemma 1. Under the assumptions of Proposition 2
with e′ and e = E(h) the considered vectors of mis-
classified instances, we have :

〈a?, e〉 ≤ 〈a?, e?〉+ ε1 + ε0(‖e‖2 +M ′)

with M ′ = max
e′∈E(H)

Fβ(e′)>Fβ(e)

‖e′‖2

Proof. We first bound 〈g, e′〉 as follows :

〈g, e′〉 = 〈g − a?, e′〉+ 〈a?, e′〉 ≤ 〈a?, e′〉+ ε0M
′,

where we have used the Cauchy-Schwarz inequality and
condition (i) of Proposition 2. This implies that :

min
e′∈E(H)

〈g, e′〉 ≤ min
e′∈E(H)

〈a?, e′〉+ε0M
′ = 〈a?, e?〉+ε0M

′

(5)

Then, by rewriting 〈a?, e〉 = 〈a? − g, e〉 + 〈g, e〉. We
have the following bound :

〈a?, e〉 ≤ 〈g, e〉+ε0‖e‖2 ≤ 〈a?, e?〉+ε1+ε0(‖e‖2+M ′).

Where we have successively applied the Cauchy
Schwarz inequality and condition (i) of Proposition 2 to
obtain the first inequality. Then, for the second one we
applied condition (ii) of Prop 2 (recall that e = E(h))
and Inequality (5) above. �

Now, we would like to give an explicit value for M ′

that can be obtained by solving the following optimi-
zation problem :

max
e′∈E(H)

‖e′‖2, s.t. Fβ(e′) > Fβ(e).

In the binary case, setting e = (e1, e2) and e′ =
(e′1, e

′
2) (see Sec. 2). We can write Fβ(e′) > Fβ(e) as :

(1 + β2)(P − e′1)

(1 + β2)P − e′1 + e′2
>

(1 + β2)(P − e1)

(1 + β2)P − e1 + e2
,

We can then simplify this expression and have :

P [(e2−e1)−(e′2−e′1)]+(1+β2)P (e1−e′1) > e′1e2−e1e
′
2.

Now, we set : e′1 = e1 + α1 and e′2 = e2 + α2.
We are now searching the values α1, α2 which are

solution of the optimization problem. By replacing the
above mentioned quantities in the last inequality we
have :

P (α1 − α2)− (1 + β2)Pα1 > e2α1 − e1α2,

⇔ α1(β2P + e2) < −α2(P − e1).

Thus we have the following condition on α1 :

α1 <
−α2(P − e1)

β2P + e2
.

Remember that α1 ∈ [−e1, P − e1] and α2 ∈
[−e2, N − e2], where N (resp. P ) is the proportion of

4



negative (resp. positive) instances. Moreover ‖e′‖22 =
(e1 + α1)2 + (e2 + α2)2. In other words, we have to
maximize a convex function under a linear constraint,
we shall then study what happen at the limit of the set
defined by the constraint, i.e., when :

α1 =
−α2(P − e1)

β2P + e2
. (6)

We are looking for the set of values of α2 such that
α1 belongs to [−e1, P−e1] using Equation (6). We get :[

−(β2P + e2), e1
β2P + e2

P − e1

]
.

Thus, the set of admissible values for α2 is[
−e2,min

(
e1
β2P + e2

P − e1
, N − e2

)]
.

The norm ‖e′‖22 reaches its maximum at the
limit of the predefined set, i.e., when α2 = −e2

or α2 = min

(
e1
β2P + e2

P − e1
, N − e2

)
. We have the

corresponding values of α1 using (6).

Our tighter slope can now be derived from the com-
putation of M ′, i.e., the value of ‖e′‖2, in the following
result :

Theorem 1. Considering the assumptions from Pro-
position 2, for all e ∈ E(H) and all t we have :

F (e?) ≤ F (E(h)) + Φ(
√

2(‖e‖2 +M ′)‖t− t?‖2 + ε1).

In other words, we refined the slope of the cones to√
2Φ (‖e‖2 +M ′))

Proof. We simply plug the result of Lemma 1 into the
inequality (3) and use

√
2 as the Lipschitz constant of

a. Indeed, ‖∂a(t)
∂t ‖2 = ‖(−1, 1)‖2 ≤

√
2. The slope is

just the interpretation of this result. �

In a multiclass setting, the Lipschitz constant takes
the more general value of

√
L. It is also harder to give

an explicit expression of M ′, but it’s value can be ob-
tained by maximizing ‖e′‖2, e′ ∈ E(H) under the fol-
lowing constraints :

Fβ(e′) > Fβ(e),

s.t. α1 < −
L∑
k=2

αk
β2(1− P1) + e1∑L
k=2 e2k−1 − (1− P1)

,

α1 ∈ [e1, P1 − e1],

∀n ∈ {2, ..., L} αn ∈ [−e2n−1, Pn − e2n−1],

where the values αn are defined as in the binary setting.
In the next section, we will show that the space of

research can be pruned and drastically reduced for low
values of F-Measure.

3.3 Search space pruning

For the following section, we will only focus on the
binary setting. Thus a, e1 and e2 will have the same
meaning as the one introduced in Section 2. We intro-
duce first the following preliminary result :

Lemma 2. The difference (e1 − e2)(t) is increasing
when e(t) is obtained from an optimal classifier trained
with costs a(t).

Proof. Let t > t′, e(t) and e(t′) the vector of mis-
classified examples obtained with an optimal classifier
(in the bayes sense) trained with costs a(t) and a(t′)
respectively. We thus have the following inequalities :

t · e2(t) + (1 + β2 − t) e1(t) ≤
t · e2(t′) + (1 + β2 − t) e1(t′),

and

t′ · e2(t′) + (1 + β2 − t′) e1(t′) ≤
t′ · e2(t) + (1 + β2 − t′) e1(t).

By multiplying the second equation by −1 and summing
the two equations, we get :

(t− t′)(e1(t)− e2(t) ≥ (t− t′)(e1(t′)− e2(t′)).

Thus :

e1(t′)− e2(t′) ≤ e1(t)− e2(t). �

The following result proposes a way to refine the
area of research for the optimal weights, i.e., the range
of values of t, we will test to optimize the Fβ-Measure.

Proposition 3. Let t > t′, e(t) and e(t′) the vector of
misclassified examples obtained with an optimal classi-
fier trained with costs a(t) and a(t′) respectively. We
have :

Fβ(e(t)) ≤ (1 + β2)
1+β2

t′ TP (t′)

β2 1+β2

t′ TP (t′) + P
. (7)

Proof. If we suppose that we have learned the best clas-
sifier in terms of weighted-error we have :

e2(t′)t′ + (1 + β2 − t′)e1(t′) ≤ (1 + β2 − t′)P,
e2(t′)t′ − (1 + β2 − t′)TP (t′) ≤ 0,

where the first inequality comes from the optimality of
the learned classifier compared to the one who classifies
all the instances as negative. We can then write :

e2(t′) ≤ (1 + β2 − t′)TP (t′)

t′
,

e1(t′)− e2(t′) ≥ (P − TP (t′)− 1 + β2 − t′

t′
TP (t′)),

≥ P − 1 + β2

t′
TP (t′).

5



We now use Lemma 2, so the fact that e1 − e2 is an
increasing function of t to write :

P − 1 + β2

t′
TP (t′) ≤ e1(t)− e2(t) ≤ P,

thus :

P − 1 + β2

t′
TP (t′) + e2(t) ≤ e1(t) ≤ P + e2(t).

We recall that e1(t) ∈ [0, P ] and e2(t) ∈ [0, N ]. Mo-
reover, the above inequation shows that we have to
search for the best F-Measure we can reach under the

constraint : P− 1+β2

t′ TP (t′)+e2(t) ≤ e1(t). We achieve
the best F-Measure by minimizing e1(t) and e2(t). The
left-hand side is minimized when e2(t) is equal to 0,

then e1(t) = P − 1+β2

t′ TP (t′). We finally compute the
corresponding F-Measure and get, for all t > t′ :

Fβ(e(t)) ≤ (1 + β2)
1+β2

t′ TP (t′)

β2 1+β2

t′ TP (t′) + P
. �

This proposition shows that, in the particular case
where the Fβ-Measure is equal to 0 for a given value of
t′, it remains equal to 0 for all t > t′. This result follows
our intuition as t′ is the weight assigned to the False
Positives : if the optimal learned algorithm (in term of
weighted error) classifies all the instances as negative,
assigning a higher cost (t > t′) to the False Positives
(i.e., putting more weight on the negative class) will
not give us the possibility to find a positive instance.
In the general case, this proposition can be interpreted
as a rectangle of unreachable values in the (t, F ) space
with a vertical offset illustrated in Figure 1 (right).
This offset is smaller (and thus more useful) when the
algorithm finds only a few True Positives (low recall).

4 Experiments

In this section, we present experiments to illustrate
the behavior of our algorithm, its bound and its per-
formance on various datasets.

4.1 Experimental settings

Table 1 describes the datasets we used for our experi-
ments, including their Imbalance Ratio (I.R.). The hi-
gher this ratio, the more one should expect that optimi-
zing the classification accuracy is a bad choice in terms
of balance between precision and recall. The datasets
IJCNN’01 and News20 are obtained from LIBSVM 1.
The other ones come from the UCI repository 2.

We reproduce the experimental settings from
[PUG14] which we describe here. For datasets with

1. https ://www.csie.ntu.edu.tw/ cjlin/libsvm/
2. https ://archive.ics.uci.edu/ml/datasets.html

Table 1 – Datasets details. The Imbalance Ratio (I.R.)
corresponds to the number of negative instances for
one positive in a binary dataset, and, in a multi-class
dataset, to the number of instances of the largest class
for one of the smallest class.

Dataset Instances Classes I.R. Features

Adult 48842 2 3.19 123
Abalone10 4174 2 5.64 10
IJCNN’01 141691 2 9.39 22
Abalone12 4174 2 15.18 10

Yeast 1484 2 27.48 8
Wine 1599 2 28.79 11

Letter 20000 26 1.32 16
News20 19928 20 1.12 62061

no explicit test set, 1
4 of the data is kept for tes-

ting. The training set is split at random, keeping 1
3 as

the validation set, used to select the hyper-parameters
using the F1-measure. The the penalty constraint of
the classifiers (hyper-parameter C) is considered in
{2−6, 2−5, ..., 26}. In the experiments t ∈ [0, 1 + β2]
in order to take into account the symmetry of the co-
efficients applied to each class (e.g. in binary both co-
efficients will be in [0, 1 + β2]). The maximal number
of training iterations is set to 50000. Fitting the inter-
cept of the classifiers is achieved by adding a constant
feature with value 1. We report test-time F1-measure
averaged over 5 experiments.

We compared two different cost-sensitive classifica-
tion algorithms (linear SVM and Logistic Regression
implemented in LIBLINEAR) and showed their per-
formance in classification without using any wrap-
per (standard classification algorithms with meta-
parameters tuned on the F-measure), with the wrapper
proposed in [PUG14] (results with the ? superscript)
and with two versions of our CONE algorithm, one
that does not use the additional pruning constraints
defined in 3.3 but can be used in both binary and mul-
ticlass settings and one (with the + superscript) which
uses additional pruning constraints but can be used
only on binary classification problems. We also com-
pare these methods with a last one, called I.R., which
consists of setting the cost of each classes with their re-
presentation in the dataset. In other words, the cost c of
a False Negative is the proportion of positive examples
in the dataset and the cost of False Positive is 1− c.

4.2 Analysis of the convergence and the
bounds on the F-measure

Figures 3 and 4 illustrate on three (arbitrarily cho-
sen) datasets the behavior of our wrapper (CONE)
compared to the one proposed in [PUG14] which de-
fines a grid to find the best costs. Both methods wrap

6



1 4 7 10 13 16 19
Number of steps / Grid size

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

F-measure in function of number of SVM on Abalone10 with C=1

grid
bound grid
CONE+
bound CONE+

1 4 7 10 13 16 19
Number of steps / Grid size

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

F-measure in function of number of SVM on Yeast with C=1

grid
bound grid
CONE+
bound CONE+

1 4 7 10 13 16 19
Number of steps / Grid size

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

F-measure in function of number of SVM on Wine with C=1

grid
bound grid
CONE+
bound CONE+

Figure 3 – Evolution of the F-Measure of a SVM classifier with C = 1 and of the considered bound as a
function of the number of t values considered on three datasets.We compare the results of CONE+ with the
grid obtained with the wrapper presented in [PUG14].

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

Our method on Abalone10 with C=1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.2

0.4

0.6

0.8

1.0
F-

M
ea

su
re

Our method on Yeast with C=1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
t

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

Our method on Wine with C=1

0.0 0.1 0.2 0.3 0.4 0.5
t

0.0

0.1

0.2

0.3

0.4

0.5

F-
M

ea
su

re

Our method on Abalone10 with C=1

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t

0.0

0.1

0.2

0.3

0.4

0.5

F-
M

ea
su

re

Our method on Yeast with C=1

0.00 0.02 0.04 0.06 0.08 0.10
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

F-
M

ea
su

re

Our method on Wine with C=1

Figure 4 – Examples of runs of our method (blue points and shaded area) and of the grid wrapper (black
crosses) both with a cost-sensitive SVM classifier with C = 1. The results are shown at different scales : full
(top) and centered around the optimal F-measure (bottom).

here a cost-sensitive SVM classifier with C = 1. A step
size of 0.1 for the value of t is taken for the grid method
as suggested in [PUG14].

Figure 3 shows, for both methods (CONE+ and
grid), the evolution of the F-Measure and of the
considered bounds (bound grid for [PUG14] and bound
CONE+ for us) as a function of the number of t values
considered. While CONE is incremental (each additio-
nal point in the graph needs only to consider one new
value of t), the grid method needs to know a priori
the number of grid points it will use. This figure shows
two main results : (i) while the bound of [PUG14] is

constant, our algorithm CONE+ allows us to refine
the bound which decreases monotonically after each
iteration ; (ii) it is worth noticing that CONE reaches
its maximum F-measure after learning much fewer mo-
dels than [PUG14]. This last point is also emphasized
by the Table 3 where we show the obtained F-Measure
after a limited number of iteration on both methods.

Figure 4 illustrates some runs on the same datasets of
both methods in the (t, F ) space. The crosses represent
the values of the F-Measure obtained using the grid me-
thod (recall that they were computed from t = 0.1 to
t = 1.9 in increasing order with a 0.1 step). The points

7



Table 2 – Classification F-Measure for β = 1 for Logistic Regression and SVM algorithms. Algorithms with a
? are reproduced from [PUG14] and the subscript I.R. is used for the classifiers trained with a cost depending
on the Imbalance Ratio. The C subscript indicates the use of our wrapper and the + superscript indicates the
use of the pruning method introduced in 3.3. The presented values are obtained by taking the mean F-Measure
over 5 experiments.

Dataset SVM SVMI.R. SVM? SVMC SVM+
C LR LRI.R. LR? LRC LR+

C

Adult 62.6 (0.2) 64.9 (0.3) 66.4 (0.2) 66.4 (0.1) 66.4 (0.1) 63.1 (0.1) 66.0 (0.1) 66.5 (0.1) 66.4 (0.2) 66.4 (0.2)

Abalone10 0.0 (0.0) 30.9 (1.2) 30.2 (2.5) 32.3 (1.3) 32.4 (1.1) 0.0 (0.0) 31.9 (1.4) 31.5 (0.3) 31.2 (1.7) 31.2 (1.5)

IJCNN’01 44.5 (0.4) 53.3 (0.4) 61.6 (0.4) 61.6 (0.6) 61.4 (0.7) 46.2 (0.3) 51.6 (0.3) 58.2 (0.4) 57.9 (0.5) 58.0 (0.4)

Abalone12 0.0 (0.0) 16.9 (2.7) 16.4 (3.6) 17.4 (3.3) 17.7 (4.1) 0.0 (0.0) 18.0 (3.5) 17.6 (2.5) 17.4 (2.7) 18.0 (3.3)

Yeast 0.0 (0.0) 29.3 (2.9) 33.8 (7.9) 32.9 (11.6) 39.0 (7.5) 2.5 (5.0) 29.0 (3.5) 33.0 (11.7) 32.1 (17.9) 31.2 (9.8)

Wine 0.0 (0.0) 15.6 (5.2) 19.8 (7.2) 17.5 (4.3) 24.7 (3.6) 0.0 (0.0) 14.6 (3.2) 22.3 (3.2) 19.4 (6.6) 24.1 (4.5)

Letter 64.4 (0.6) 63.5 (1.5) 69.6 (0.6) 69.7 (0.6) - 71.8 (0.3) 71.7 (0.3) 71.8 (0.3) 71.8 (0.3) -
News20 84.0 (0.2) 84.0 (0.3) 84.1 (0.3) 84.0 (0.2) - 83.4 (0.1) 83.4 (0.1) 83.4 (0.2) 83.4 (0.2) -

Table 3 – Classification F-Measure for β = 1 when limiting the number of iterations/grid steps to 9, then 4.
SVM? are results reproduced from [PUG14]. SVMC is our wrapper method and SVM+

C , our wrapper method
when using the pruning method introduced in 3.3.

Steps 9 4

Dataset SVM? SVMC SVM+
C SVM? SVMC SVM+

C

Adult 66.1 (0.1) 66.5 (0.1) 66.5 (0.1) 65.8 (0.3) 66.5 (0.03) 66.5 (0.04)

Abalone10 30.2 (2.5) 31.0 (1.1) 32.3 (1.2) 30.7 (2.8) 12.2 (14.5) 30.8 (1.1)

IJCNN’01 61.6 (0.4) 61.0 (0.6) 61.6 (0.6) 61.0 (0.5) 61.0 (0.6) 61.0 (0.6)

Abalone12 16.1 (3.5) 12.2 (7.0) 17.0 (3.5) 0.0 (0.0) 0.0 (0.0) 15.9 (3.7)

Yeast 24.5 (16.3) 34.8 (8.3) 32.3 (12.2) 33.0 (18.0) 14.7 (12.0) 35.0 (8.4)

Wine 11.7 (11.3) 11.3 (10.8) 19.4 (6.6) 0.0 (0.0) 0.0 (0.0) 17.7 (4.4)

are those computed iteratively with CONE. The sha-
ded areas correspond to the unreachable regions of the
space characterized by our algorithm. The top figures
show the results in the full t scale. The most impres-
sive result comes from the fact that the crosses quickly
enter the shaded area, which means that the grid algo-
rithm is learning models that have no chance to yield
an optimal performance. The bottom part of the figure
zooms on the white area considered by CONE. We
can see that only a few crosses are in this area (even
only one in the case of Yeast) while all our points are
useful to try to get the best F-measure.

4.3 Performance

Tables 2 and 3 show the F-measure performance
of each algorithm on all the datasets. Note that, in
theory, given an infinite computation budget, our me-
thod should give equal (optimal) F-measure results
to the grid method of [PUG14]. In practice however,
[PUG14] have set the grid step to 0.1 and perform 19
model computations. To fairly compare the two me-
thods, we have set the number of iterations of the
CONE method to 19 too in Table 2. The results are
not significantly better for any of the methods except
for Yeast and Wine where CONE+ dominates. This

indicates that, on these datasets, the grid step cho-
sen by [PUG14] is relevant to approach the optimal
F-measure and that our method logically yields com-
parable final results. Note that the classical methods
(denoted by the subscript I.R.) which consists of weigh-
ting each classes with respect to their representation in
the dataset is not giving the best F-Measure. Both grid
and CONE methods are giving best results.

Table 3 shows the performance of both methods (ex-
cept the I.R. one) with a limited budget : the number
of iterations/computations is set to 9 and 4. With 9
iterations and for the first four datasets (Adult, Aba-
lone10, IJCNN’01 and Abalone12), the results are not
significantly better for any of the methods which indi-
cates that a coarser grid is sufficient to find a good F-
measure. For the most imbalanced datasets (Yeast and
Wine) the results are significantly better but they are
more unstable (the variance indicated between paren-
thesis is much higher). This last observation is empha-
sized when it comes to use only four iterations. On the
three most imbalanced dataset (mainly on Abalone12
and Wine) our method CONE+ is able to focus on
the right space of research in the (t, F ) space which is
translated by a non-zero F-Measure measured on the
test set. Furthermore, on the Yeast dataset the propo-

8



sed method is much stable than the grid one. When it
comes to CONE, we think that the results are worst
because it is taking another direction of reasearch com-
pare to the algorithm which prunes the space.

5 Conclusion

We have presented CONE, a novel iterative ap-
proach for F-measure optimization based on cost-
sensitive classification. This approach has strong theo-
retical guarantees showing that the F-measure of the
output model is close to the optimal one with respect to
the class of hypothesis considered. Furthermore, it has
an efficient algorithmic strategy allowing us to prune
drastically the search space of possible costs leading
to a fast convergence to the true parameters. We ex-
perimentally demonstrated the efficiency of our ap-
proach on many imbalanced datasets and the inter-
est of our theoretical framework. The results provided
in this paper improve the ones obtained in [PUG14]
both from a theoretical and practical standpoint in
a context where there are relatively few papers that
provide strong theoretical results on F-measure clas-
sification. Our perspectives include the refinement of
our theoretical framework for exploring more efficiently
the search space or extension to more difficult contexts
such as the SGD-based algorithms used with neural
networks. We also aim at working on harder settings
where the imbalance ratio can be larger than 100 with
very few positive data.

Références

[BFSDH15] Róbert Busa-Fekete, Balázs Szörényi, Kr-
zysztof Dembczynski, and Eyke Hüller-
meier. Online f-measure optimization. In
NIPS, 2015.

[CBK09] Varun Chandola, Arindam Banerjee, and
Vipin Kumar. Anomaly detection : A sur-
vey. ACM Comput. Surv., 2009.

[DWCH11] Krzysztof J Dembczynski, Willem Wae-
geman, Weiwei Cheng, and Eyke Hüller-
meier. An exact algorithm for f-measure
maximization. In NIPS, 2011.

[Jan05] M. Jansche. Maximum expected f-
measure training of logistic regression mo-
dels. In EMNLP, 2005.

[Joa05] T. Joachims. A support vector method
for multivariate performance measures. In
ICML, 2005.

[LFG+13] Victoria Lopez, Alberto Fernandez, Salva-
dor Garcia, Vasile Palade, and Francisco
Herrera. An insight into classification
with imbalanced data : Empirical results

and current trends on using data intrin-
sic characteristics. Information Sciences,
250 :113 – 141, 2013.

[MKO+03] David R Musicant, Vipin Kumar, Aysel
Ozgur, et al. Optimizing f-measure with
support vector machines. In FLAIRS,
2003.

[NKJ15] Harikrishna Narasimhan, Purushottam
Kar, and Prateek Jain. Optimizing non-
decomposable performance measures : A
tale of two classes. In Proceedings of
the 32nd International Conference on Ma-
chine Learning, ICML 2015, Lille, France,
6-11 July 2015, pages 199–208, 2015.

[PCM13] S.K. Shevade P.M. Chinta, P. Balamu-
rugan and M.N. Murty. Optimizing f-
measure with non-convex loss and sparse
linear classifiers. In IJCNN, 2013.

[PUG14] Shameem Puthiya Parambath, Nicolas
Usunier, and Yves Grandvalet. Optimi-
zing f-measures by cost-sensitive classifi-
cation. In NIPS, pages 2123–2131, 2014.

[vR74] C. J. van Rijsbergen. Further experiments
with hierarchic clustering in document re-
trieval. Information Storage and Retrie-
val, 10(1) :1–14, 1974.

[YCLC12] Nan Ye, Kian Ming Adam Chai, Wee Sun
Lee, and Hai Leong Chieu. Optimizing
f-measure : A tale of two approaches.
In Proceedings of the 29th International
Conference on Machine Learning, ICML
2012, 2012.

[ZEPB13] Ming-Jie Zhao, Narayanan Edakunni,
Adam Pocock, and Gavin Brown. Beyond
fano’s inequality : Bounds on the optimal
f-score, ber, and cost-sensitive risk and
their implications. JMLR, 2013.

9


	Introduction
	Notations and context
	The binary classification setting
	The multiclass classification setting
	Base Results

	Contributions
	CONE Algorithm
	A tighter bound for the Optimal F-Score
	Search space pruning

	Experiments
	Experimental settings
	Analysis of the convergence and the bounds on the F-measure
	Performance

	Conclusion

