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Abstract. Bank fraud detection is a difficult classification problem where
the number of frauds is much smaller than the number of genuine transac-
tions. In this paper, we present cost sensitive tree-based learning strate-
gies applied in this context of highly imbalanced data. We first propose a
cost sensitive splitting criterion for decision trees that takes into account
the cost of each transaction and we extend it with a decision rule for
classification with tree ensembles. We then propose a new cost-sensitive
loss for gradient boosting. Both methods have been shown to be par-
ticularly relevant in the context of imbalanced data. Experiments on a
proprietary dataset of bank fraud detection in retail transactions show
that our cost sensitive algorithms allow to increase the retailer’s bene-
fits by 1,43% compared to non cost-sensitive ones and that the gradient
boosting approach outperforms all its competitors.

Keywords: Cost Sensitive Learning · Imbalance Learning · Binary Clas-
sification

1 Introduction and Related Work

Imbalanced data are ubiquitous in many real world applications, e.g. in medi-
cal domains [13], bank transactions [2,16] or industrial processes [1]. Supervised
machine learning tasks are challenging in this context because algorithms strug-
gle to focus on the important class (e.g. fraud, disease, failure, etc.) which is
under-represented in the data. Classical approaches tend to tackle the problem
by rebalancing the data [7] or optimizing different performance measures than
the classical accuracy [15] which would otherwise lead to predict all instances
in the over-represented classes. Ensemble methods such as random forests [5]
or boosting algorithms [9,17] have been shown to be particularly successful in
this context because they can combine local decisions taken in areas where the
imbalance is (made) less prominent.
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In some application domains such as fraud/anomaly detection, additional
precise information can be given to favor one class from other ones in the learning
process. This can for example be done by cost-sensitive learning approaches [8]
which can take into account user preferences (in terms of the importance of the
classes or of the attributes). For example, [2] proposes a cost-sensitive decision
tree stacking algorithm to tackle a fraud detection task in a banking context.
The authors provide a cost matrix that assigns costs to each decision made
by the model and define an optimization function that takes this matrix into
account. In Decision Tree learning the splitting criterion is made according to
these costs method and not according to the usual impurity measures (such as
entropy or Gini). This allows them to better target the rare classes. [17] presents
a cost-sensitive version of the Adaboost boosting algorithm [9] and also shows
its relevance in this imbalanced scenario. [18] gives a general study of the cost-
sensitive learning methods in the context of imbalanced data. They categorise
the methods into two sets: those which fix the error costs in each class and
apply it a posteriori to make a decision, and those which tune a priori the cost
matrix depending on the local distribution of the data (this category seems more
successful). [16] tackles the problem of credit card fraud detection. The approach,
similar to [2] and to the first one we present in this paper, proposes to induce
decision trees by splitting each node according to a cost matrix associated to
each example. However, as in [16], they focus on the actual money losses losses
but not on possible benefits of better classifications and they apply their method
to ranking problems. Other methods like [13] have focused on the cost of the
attributes (here in the context of medical data). They consider that acquiring
the exact value of a given attribute is costly and try to find a good compromise
between the classification errors and the total feature acquisition costs.

In this paper, we also propose different cost sensitive tree-based learning ap-
proaches in the highly imbalanced context of bank fraud detection. The first
approach, similar to [2] and [16] and presented in Section 3, uses a cost sensitive
splitting criterion for decision trees that takes into account the costs (as well as
the benefits) of each transaction. But it differs from [2] and [16] in the combi-
naison strategy for building an ensemble method. The second one presented in
Section 4 is a new cost-sensitive proper loss [6] for gradient boosting. Section 2
presents our notations, the gain/cost matrix we are working with and the as-
sociated weighted miss-classification loss we want to optimize. The experiments
and results are presented in Section 5. We illustrate the different methods using
both the retailer margin and the F-Measure (F1) as performance measures. The
experiments are made on a proprietary dataset of the Blitz company. We finally
conclude in Section 6.

2 Notations and Problem Formulation

2.1 Notations

We focus in this paper on binary supervised classification problems. Let S =
(X,Y) = ((x1, y1), ...(xm, ym)) be a set of m training instances where xi ∈ Rd
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and yi ∈ {0, 1}m are their corresponding labels. The notation xji is used to
denote the value of the jth variable of the instance i. The label 0 will be used
for the negative or majority class (i.e. the genuine transactions) and the label 1
will be used for the positive or rare class (i.e. the fraudulent transactions). We
will further denote by S+ the set of m+ positive examples and S− the set of m−
negative examples (here m− >> m+). We will also note ŷi the label predicted
by our learned model for the instance i. We use the notation p for the predicted
probability that an example belongs to the minority class, F will be used to
design the learned model, i.e. pi = F (xi) is the probability that the transaction
is fraudulent. A threshold is then used to get its label.

2.2 Problem Formulation

Our goal is to maximize the profits of the retailers by predicting, online, with
decision trees [4] which transactions, made by a customer are genuine or not.
While training the trees offline, the company might like to introduce some costs
assigned to the training examples, according to the adequacy between the actual
label of the transaction and the predicted one (see Table 1). For instance, the
retailers will gain money by accepting a genuine transaction, i.e. cTNi

> 0,
where TN stands for True Negative or genuine transactions correctly classified.
However, if the retailers accept a fraudulent one, they will loose the amount of
the transaction cFNi

< 0, where FN stands for False Negative or fraudulent
transaction predicted as a genuine one.

Table 1. Cost Matrix associated to each example of the training set.

Predicted Positive (fraud) Predicted Negative (genuine)

Actual Positive (fraud) cTPi cFNi

Actual Negative (genuine) cFPi cTNi

In this paper, we use a similar approach as the one presented in [2]. However,
instead of only minimizing the money loss due to an acceptation of a fraudulent
transaction, we rather focus on maximizing the retailers profits, i.e. we aim at
maximizing the loss function L defined as follows:

L(y | ŷ) =

m∑
i=1

[yi(ŷicTPi
+ (1− ŷi)cFNi

) + (1− yi)(ŷicFPi
+ (1− ŷi)cTNi

)] .

(1)
Talking about profits instead of classical ”costs” is more meaningful for the

retailers. Furthermore, if we simply focus on the error made by the algorithm, a
correctly classified instance will have no influence on the learned model.

In the next section, we show how this loss function can be optimized while
learning decision trees.
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3 Cost Sensitive Decision Trees

A classic decision tree induction algorithm proceeds in a top-down recursive
divide-and-conquer manner. At each step, the best (according to a given crite-
rion) attribute A is chosen as a new test (internal node) in the tree and the
set of examples is splitted according to the outcome of the attribute for each
of the instance (there is one child node v per possible outcomes for a given at-
tribute). Then, the same procedure is applied recursively to each new created
subset of examples Sv until reaching a given stopping criterion. Classification
trees (e.g. [4]) usually split the nodes according to an ”impurity” measure. One
such measure is the Gini index of a set of m instances (xi,yi) defined as follows:

Gini = 1 −
∑C
k=1 p

2
k, where pk denotes the probability to belong to the class k

and C is the number of classes (C = 2 in our case). In this paper, the splitting
criterion is based on the cost matrix defined above. We do not want to minimize
an impurity but to maximize the retailer profits according to the cost matrix.

3.1 Splitting criterion and label assignment

Our splitting criterion ΓS on a given set of training instances S of size m (as
defined in Section 2) is:

ΓS =
∑
i∈S−

(m+

m
cFPi

(xi) +
m−
m

cTNi
(xi)

)
+
∑
i∈S+

(m+

m
cTPi

(xi) +
m−
m

cFNi
(xi)

)
,

(2)
where the first term corresponds to the profits due to genuine transactions and
the second to the fraudulent transactions.

Note that this quantity depends on the amount of the transaction of each ex-
ample in S through the costs c. The best attribute A is the one which maximizes
the quantity:

(
1

n+ ε
)

∑
v∈Children(A)

ΓSv
− ΓS .

Note that this quantity is very similar to the splitting criterion used to minimize
to minimize the Gini impurity up to the number of examples in the parent node.
We simply take the opposite of the classical gain and divide it by the number of
instances in the parent node, so that this criterion becomes convex.

The values ΓSv
are computed using equation (2) on each set Sv. It differs

from the splitting criterion used in [2] where the splits minimize the cost of
wrongly accepting or blocking the transactions.

Once the induction tree stopping criterion is reached (ours is defined in Sec-
tion 5), a class label is associated to each leaf of the tree. For the sake of clarity
we introduce the following notations:
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γ0(l): the average profit associated to the leaf l if all the instances are pre-
dicted as genuine:

γ0(l) =
1

|l|

 ∑
i:xi∈l∩S−

cTNi +
∑

i:xi∈l∩S+

cFNi

 ,

γ1(t): the average profit associated to the leaf l if all instances are predicted
as frauds:

γ1(l) =
1

|l|

 ∑
i:xi∈l∩S−

cFPi
+

∑
i:xi∈l∩S−

cTPi

 ,

where |l| denotes the number of examples in the leaf l and i : xi ∈ l ∩ S
denotes the index i of the example xi both in leaf l and in the set S.

A leaf is assigned the label 1 if γ1 > γ0, i.e. all the transactions in a given leaf
are predicted fraudulent if the associated average profit is greater than one as-
sociated when all instances are predicted genuine.

Note that this strategy can be easily extended to ensembles of trees [5]. In
this case, a standard decision rule consists in applying a majority vote over
the whole set of the T learned decision trees. However, this decision rule does
not take into account the probability score that can be associated to each tree
prediction using the class distribution of the examples in the leaf l(xi) (as in
[16]). Following this idea, we suggest here to label an instance as positive if the
average γ̄1(x) of the average profits γ1(lj(xi)) over the T trees is greater than
γ̄0(x), where lj(xi) is the leaf of the jth tree containing xi:

γ̄1(x) =
1

T

T∑
j=1

γ1(l(x)) ≥ 1

T

T∑
j=1

γ0(l(x)) = γ̄0(x).

4 Cost Sensitive Gradient Boosting

In this section, we briefly present the gradient boosting framework introduced in
[11]. Then we present a proper cost-sensitive loss function in order to implement
it in a gradient boosting algorithm in an efficient way.

4.1 Generalities about Gradient Boosting

Gradient boosting has been shown to be very efficient to deal with classification
problems, and a very good candidate to address issues due to imbalance data
[3,12]. Unlike the well known Adaboost algorithm [9], gradient boosting performs
an optimization in the function space rather than in the parameter space. At each
iteration, a weak learner ft is learned using the residuals (or the errors) obtained
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by the linear combination of the previous models. The linear combination Ft at
time t is defined as follows:

Ft = Ft−1 + αtft, (3)

where Ft−1 is the linear combination of the first t−1 models and αt is the weight
given to the tth weak learner. The weak learners are trained on the residuals
ri = yi−Ft−1(xi) of the current model. These residuals are given by the negative
gradient, −gt, of the used loss function L with respect to the current prediction
Ft−1(xi):

ri = gt = −
[
∂L(y, Ft−1(xi))

∂Ft−1(xi)

]
.

Once the residuals ri are computed, the following optimization problem is solved:

(ft, αt) = argmin
α,f

m∑
i=1

(ri − αf(xi))
2.

Finally, the update rule (3) is applied.

4.2 Cost sensitive loss for gradient boosting

In this section we aim to use the framework presented in [6] to give a proper
formulation of our loss function of Eq (1) in the context of a boosting algorithm,
using the gain matrix presented in Table 1.

Using a Bayes rule for classification [8], an instance i is predicted fraudulent
if γ1 > γ0, i.e:

picTPi
+ (1− pi)cFPi

− picFNi
− (1− pi)cTNi

> 0,

where pi denotes the probability of the instance to be a genuine transaction. It
gives us a threshold over which the transaction is declined (or predicted fraud-
ulent):

pi >
cTNi − cFPi

cTPi
− cFNi

+ cTNi
− cFPi

= si

Using the threshold si, our cost-weighted miss-classification loss can be rewrit-
ten as:

L(y | p) = − 1

m

m∑
i=1

(yicTPi
+ (1− yi)cFPi

)1pi>si +(yicFNi
+(1−yi)cTNi

)1pi≤si .

(4)
Then, following the framework presented in [6], L(y | p) can be rewritten as

follows:

L(y | p) =
1

m

m∑
i=1

ξi [yi(1− si)1pi≤si + (1− yi)si1pi>si ]

− 1

m

m∑
i=1

(yicTPi
+ (1− yi)cTNi

), (5)
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where 1 is an indicator function and where we use the fact that s = s1p>s +
s1p≤s and set ξi = cTNi

− cFPi
+ cTPi

− cFNi
which is positive in our context.

In fact, cTN > cFP , we earn more if we correctly classify a genuine transaction.
Furthermore, if we accept a fraudulent transaction then we loose money and we
earn nothing if we declined it, i.e. 0 = cTP > cFN .
The first part of equation (4.2), which we will note Lsi corresponds to the cost-
sensitive loss introduced in [6] with si ∈ [0, 1]. Each term of the sum is multiplied
by a constant ξi which depends on the data. The second term represents the
maximum that our loss can reach if the predictions were perfect. Note that this
second term does not depend on pi. Therefore, we want to minimize:

argmin
p∈[0,1]

Ey[L(y | p)] = argmin
p∈[0,1]

Ey

[
1

m

m∑
i=1

ξiLsi(yi | pi)

]
.

However it has been shown that in the context of Boosting, it is more con-
venient to use an exponential approximation [11]. We adapt it to consider the
output of a prediction model F directly in our approach as follows 4: :

`si = (1− si)yie−F (xi) + si(1− yi)eF (xi).

Solving
∂EY[`si ]

∂F (xi)
= 0, we obtain the link function ψi between pi and F̂i = F (xi):

pi = ψi(F̂i) =
1

1 +
1− si
si

e−2F̂i

,

and its inverse ψ−1i is given by:

eF̂i =

(
1− si
si

)1/2(
pi

1− pi

)1/2

. (6)

The way to transform the output of a boosting model into a probability (the
calibration process) plays a key role in the performance of the predictive algo-
rithm. It has been shown that we can achieve at least the same performance with
well calibrated boosting model than with one which is cost sensitive [14]. How-
ever, we think that our cost sensitive approach gives us a good transformation
of the output of the model into a probability.

It is worth noticing that we can make use of equation (5) to provide a smooth
approximation of the indicator function, such that:

1pi>si ≤
(

1− si
si

)1/2(
pi

1− pi

)1/2

= eF̂i .

4 note that it exists a direct link between a predicted probability and the output of a
model (see Section 3 of [10] and Section 4 of [6] for further details
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Note that: pi > si ⇐⇒ ψi(F̂i) > si ⇐⇒ eF̂i > 1 ⇐⇒ F̂i > 0. So it is
enough to check the sign of the score to predict the label of each transaction.
Finally we are minimizing an upper bound L̃ of L:

L(y | p) ≤ L̃(y | F ) =
1

m

m∑
i=1

(1− si)yie−F̂i + si(1− yi)eF̂i .

To use it in a gradient boosting algorithm, it remains to compute the first
and second order derivative of L̃ for each instance i with respect to F̂i. They are
given by:

∂L̃

∂F̂i
= ξi

[
−(1− si)yie−F̂i + si(1− yi)eF̂i

]
,

and
∂2L̃

∂F̂ 2
i

= ξi

[
(1− si)yie−F̂i + si(1− yi)eF̂i

]
.

5 Experiments

In this section, we evaluate the decision rule presented in Section 3 and the loss
function presented in Section 4. We compare the results of our method on the
retailer profits compared to using a classic Random Forest (RF) algorithm based
on the Gini impurity criterion (baseline). The experiments are performed on a
private dataset own by the Blitz company which can not be entirely described
and made available for privacy reasons.

5.1 Dataset and experiments

The Blitz dataset consists of 10 months of bank transactions of a retailer. The
first six months are used as the training set (1, 663, 009 transactions) and the
four remaining ones as test set (1, 012, 380 transactions). The data are described
by 17 features and are labeled as fraud or genuine. The Imbalance Ratio (IR) of
the dataset is equal to 0.33%.

The first series of experiments compares the random forest baseline (RF) to
the tree ensemble algorithm which uses the decision rule presented in Section 3
(RFX). We made different variants of the decision rule:

1. RFmaj: each leaf is labeled according to the majority class of the examples
that fall into the leaf, thus the output of each tree is in {0,1}. The voting
criterion is detailed below.

2. RFmaj−mar: each leaf is labeled to maximize the profit (also called margin)
over the set of all examples in the leaf (the label is 0 if γ0 > γ1 and 1 other-
wise). We then use a majority vote to predict the label of each transaction.

3. RFmean−mar: this model is the one described in Section 3
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For each tree ensemble algorithm, we have used 24 trees with the same maximum
depth. Furthermore, for the models RF,RFmaj and RFmaj−mar, the ensemble
classifies a transaction as ”fraud” if at least 9 trees agree on this positive class
(this threshold is coherent with the one currently used in the Blitz company).

The second series of experiments is dedicated to the analysis of the gradient
boosting approaches. We compare our approach GBmargin, presented in Section
4.2, with three gradient boosting algorithms which aim to minimize the logistic
loss:

1. GBtune−Pre: the threshold has been chosen so that we have the same pre-
cision on the validation set as the model RF in the training phase.

2. GBtune−mar: the threshold has been chosen to maximize the margin on the
validation dataset.

3. GBtune−F1: the threshold has been chosen to maximize the F-Measure F1

on the validation dataset.

For each of these three experiments we needed a validation data set to choose
the optimal threshold over which a transaction is predicted as fraudulent. For
this purpose, the training set is splitted in two sets, the first one is used to
train the model and the other as a validation set, to find the best threshold
for the given criterium we want to optimize. To do so, the first four months of
transactions constitute the training set, the two remaining months are used as
the validation set. Finally these three experiments have been conducted on the
same training/validation set and the R software5.

For privacy reasons, the explicit expressions of cTPi
, cFPi

, cTNi
, cFNi

of the
cost matrix can not be given. Note that they are simple functions of the amount
M of the transaction. For example, we define cFPi as follows cFPi = h(M)− ζ,
where ζ is a parameter used to translate in financial terms, the dissatisfaction
of the customer whose transaction has been declined.

5.2 Results

To measure the performance of each algorithm, we measure the gap between the
maximum profits, i.e. the profits obtained if no errors are made, and the profits
given by the algorithms. We use classic performance measures that are often used
in an imbalanced setting such as the Precision, Recall and F1-Measure defined
as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
F1 =

2 Precision×Recall
Precision+Recall

.

All the experiments have been conducted with the same cost matrix where
ζ = 5. The results are presented in Table 2. We first notice that we get a reduction
of the gap of profits of 1.43%, with the gradient boosting model GBmargin

compared to the baseline RF. To give an idea to the reader, having a gap of 1%

5 https://www.r-project.org/ and using the package XGBoost.
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Table 2. Gap to the maximal margin of each algorithm. In this table, the value of
ζ was set to 5. The results are separated into two groups: Random Forest models and
Gradient Boosting models.

Experiments Gap max
profits

Precision Recall F1

RF 2.99% 68.1% 5.66% 10.5%
RFmaj 2.88% 73.8% 4.71% 8.86%
RFmaj−mar 1.81% 30.2% 10.6% 15.7%
RFmean−margin 1.87% 30.3% 9.52% 14.5%

GBtune−Pre 3.01% 61.0% 6.49% 11.7%
GBtune−mar 2.26% 19.1% 16.6% 17.8%
GBtune−F1 2.70% 45.4% 9.24% 15.4%
GBmargin 1.56% 18.8% 13.3% 15.6%

to the maximum profits represents a loss of 43, 000 euros. So, by reducing the
gap of 1.43% we increase the profits of the retailer by 60, 000 euros.

Regarding the Random Forest models, we note that the proposed approaches
are able to improve the profits of the retailer compared to the model RF. How-
ever, we note that RFmaj, which uses the number of examples and their label
to predict the class of the examples in the leaf, gives similar performance as
RF even if it is built differently. This means that the way to label the leaves
has, at least, the same importance as the way to build the trees. The models
RFmaj−mar and RFmean−mar which directly use the notion of average profits
in each leaf are the two models that give the best results, in terms of both profits,
recall and F-Measure even if the precision is reduced. This is explained by the
fact that refusing a genuine transaction will have small impact on the margin of
the retailers while accepting a fraudulent transaction will represent a loss for the
retailers that is close to the amount of the transaction. Using only our proposed
method of Random Forest algorithm, we are able to reduce the gap of 1.18.

If we focus now on gradient boosting models, we first note that the model
GBtune−Pre is the one with the highest precision. On the other hand, the other
models have a significantly smaller precision but exhibits a higher recall: by max-
imizing the margin they actually try to find the most fraudulent transactions.
As mentioned previously, our cost-sensitive approach GBmargin is the one that
achieves the best results in terms of margin. But it has also the worst precision
(18.8%) for the reason given in the previous paragraph. This model provides
also better results than GBtune−mar which emphasizes the interest of a cost-
sensitive approach compared to a simple classification model. However, we note
that the model GBtune−F1 is not the one achieving the best F-Measure at test
time. Let us also note that F1 score remains low for each presented algorithms.
We think that low values are observed because of the complexity of the data and
the problem. Frauds are rare and spread in the all data set.

In a second part, we want to analyze the effect of the parameter ζ. Indeed,
some retailers, for marketing reasons, do not want to refuse the transaction of
good customers, i.e. they prefer to have a higher precision on their predictions.
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A simple way to take this into account in our model is to artificially increase
the value of ζ. Figure 1 shows the impact of the parameter ζ on the Precision,
Recall and F1, while the Gap Margin is still evaluated with ζ = 5. Recall that
some retailers do not want to refuse the payment of the good customers, however,
the model which maximized is the one with the lowest precision (16.6%). So, it
can be interesting to propose to the retailers several models using different values
of ζ and give them the choice of the compromise between profits and precision.
We first notice that the higher the value of ζ, the higher the precision and the
smaller the recall. However, we see that it possible to reach a precision which is
twice superior than the GBmargin one by setting ζ = 20 and the gap will still
be low with a value of 1.94%.

Fig. 1. Study of the influence of the parameter ζ in the definition of the gain of false
positive CFPi . We illustrate the behaviour of the Precision, Recall and F1 according
to ζ. We also represent the gap to the maximum margin with respect to ζ, but we set
ζ = 5 to compute the gap.

6 Conclusion

We have presented different cost sensitive tree-based learning strategies to detect
frauds in imbalanced retail transaction data. The first strategy is a tree ensemble
algorithm which uses a new decision rule which tries to directly optimize the
retailer profit. The second one is a gradient boosting algorithm which optimizes
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a new cost-sensitive loss function. Experiments show that our cost sensitive
algorithms allow to increase the retailer’s benefits by 1,43% compared to non
cost-sensitive ones and that the gradient boosting approach outperforms all its
competitors. We plan to focus on how to combine different types of models that
may capture different modalities of the data. Furthermore, due to our industrial
context, we also want to work on the notion of concept drift and study how the
distribution of frauds is evolving in order to take it into account in our models.
This opens the door to the development of new domain adaptation methods.
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