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a b s t r a c t 

In this paper, we address the problem of learning from imbalanced data. We consider the scenario 

where the number of negative examples is much larger than the number of positive ones. We pro- 

pose a theoretically-founded method which learns a set of local ellipsoids centered at the minority 

class examples while excluding the negative examples of the majority class. We address this task from a 

Mahalanobis-like metric learning point of view and we derive generalization guarantees on the learned 

metric using the uniform stability framework. Our experimental evaluation on classic benchmarks and on 

a proprietary dataset in bank fraud detection shows the effectiveness of our approach, particularly when 

the imbalancy is huge. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The study of imbalanced data is an active and important topic

due to its huge economical impact, for example in anomaly or

fraud detection in applications related to banks, medicine, intru-

sion detection, video-surveillance, fault detection or industrial pro-

cesses [2,9,12,14] . In such applications, datasets are usually com-

posed of a large number of negative examples (e.g. genuine trans-

actions, normal MRI, normal human behavior, etc.) and only a few

positive data (e.g. frauds, faults, hacking, etc.). From a theoretical

point of view, imbalanced scenarios raise two main challenging

problems for the machine learning and data mining communities.

First, the large majority of classic supervised learning methods op-

timize the accuracy by minimizing error-based loss functions, like

the hinge loss in Support Vector Machines, the exponential loss in

Boosting, or the logistic loss in Logistic Regression. However, if one

class is rare, those methods will struggle to capture any useful in-

formation about this class and will obtain a high accuracy by sim-

ply predicting all (possibly new) examples as being of the majority

class(es). Second, deriving theoretical results in an imbalanced set-

ting is difficult and many existing approaches come without any

specific guarantee. 
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In this paper, we aim at addressing both issues by designing a

ew algorithm - driven by the minority class - for which gener-

lization guarantees are derived. Unlike the state of the art, our

ethod does not resort to sampling preprocesses. Indeed, it is

orth noticing that classic methods typically consist of over/under-

ampling the data [1] or creating synthetic examples in the neigh-

orhood of the minority class [10] in order to get more balanced

ets. However, as we will see in this paper, when the datasets be-

ome highly imbalanced (i.e. no more than 2–3% positives), those

ethods usually fail to model the minority class because they suf-

er from an inability to generate enough diversity which is key for

 sampling method to work well. In such extreme situations, two

ain families of solutions are available. The first one consists of

esigning alternative loss functions able to directly capture the im-

alance in the data and usually based on the F-Measure, the area

nder the ROC curve, or the Average Precision [11] . The main pit-

alls related to this line of research concern the difficulty to deal

ith non smoothed and non convex measures. The second cate-

ory of methods aims at changing the original problem into an

nsupervised anomaly detection task. This is for example done by

upport Vector Data Description (SVDD) [3,17,21] methods such as

ne-class SVMs (OCSVM) [13] which work on unlabeled data. SVDD

earns the smallest enclosing ball which includes most of the train-

ng data and excludes all examples lying in the tail of the data dis-

ribution, which are considered as anomalies. More formally, the

oal is to solve the following constrained optimization problem
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iven a sample of n instances: 

in 

R, c , ξ
R 

2 + 

μ

n 

∑ n 
i =1 ξi , 

s.t. ‖ x i − c ‖ 

2 ≤ R 

2 + ξi , ∀ i = 1 , . . . , n, 

ξi ≥ 0 , 

(1) 

here R and c are respectively the radius and the center of the

all and ξ i is the slack variable associated to the i th instance x i . μ
s tuned in order to control the proportion of the data outside the

phere (considered as anomalies). Note that in Pauwels and Am-

ekar [17] , the authors have shown that using the radius instead

f the square of the radius in this formulation is often preferable. 

Several refinements of the SVDD method can be found in the

iterature to take more than one class into account (e.g. see Liu

nd Zheng [16] and Boujnouni et al. [7] for binary problems) or

o use multiple local models and apply non linear transformation

o the data [7,15] . Even if the kernel-based methods are effective,

he computation of the kernel is often expensive (according to the

umber of examples in the dataset) and does not scale well on

ost real datasets. An interesting approach, which does not suf-

er from this drawback, is presented in Wang et al. [22] . The au-

hors include a linear transformation of the data, in the form of

 Positive Semi Definite (PSD) matrix M in the SVDD optimization

roblem. To avoid high computational costs, they set M to be the

nverse of the covariance matrix, which allows the induction of el-

ipsoids rather than spheres. Such objects are able to cover a larger

olume in the input space compared to the spheres. 

In this paper, we present a supervised machine learning

ethod called ME 2 - for Maximum Excluding Ellipsoids - that can

ackle imbalanced data without requiring sampling strategies. We

xploit the idea of learning multiple local models to capture non

inearity at a cheap cost as in Le et al. [15] and combine it with a

etric learning formulation. However, we learn local models cen-

ered at each minority class example which exclude the exam-

les of the majority class(es). This, contrary to the previously cited

ethods, allows us to consider settings where the minority class

xamples do not necessarily behave as anomalies but may be hid-

en within one of the modes of the data (e.g. in fraud detection).

nlike Wang et al. [22] , we optimize both the shape and the ori-

ntation of the ellipsoid by learning a Mahalanobis distance based

n a PSD matrix M . This geometrical flexibility allows us to cap-

ure more accurate and potentially larger areas around the minor-

ty class examples. A nice property of our approach is that M can

e obtained in closed-form solution ensuring directly (and for free)

he positive definiteness of M [18,20] . Therefore, we prevent the al-

orithm from having to check the positiveness of the eigenvalues

f M , which has a cubic complexity in the size of M , as required by

any metric learning algorithms [5,6] . Beyond its algorithmic con-

ribution, materialized by ME 2 , this paper also aims at providing

uarantees on the learned models based on the uniform stability

ramework [8] . We prove that our algorithm is stable, i.e. robust to

hanges in the training set. 

To sum up, our contribution is four-fold: 

1. We introduce a simple strategy consisting of learning local

models centered at each positive example (which can be done

in parallel) allowing us to capture non linearity in the feature

space. This way, our algorithm is particularly relevant in the

context of imbalanced settings where (i) the number of local

models to learn is very small but (ii) the minority examples

(i.e. the centers of the ellipsoids) play a key role. 

2. We show that ME 2 is algorithmically efficient by demonstrating

that the learned matrices satisfy the PSD constraint for free. 

3. We prove that ME 2 is theoretically founded by deriving gener-

alization guarantees on the learned models. 
4. We experimentally show that ME 2 is effective compared to the

state of the art methods, particularly on highly imbalanced set-

tings. 

As far as we know, ME 2 is the first method able to gather all

hose interesting features in the field of learning from imbalanced

ata. 

The rest of this paper is organized as follows: In Section 2 , we

resent the convex formulation of our algorithm ME 2 with both

rimal and dual formulations. Section 3 is devoted to the theoreti-

al study of our algorithm. We show that ME 2 is stable which pro-

ides some insight into the variance of the algorithm with respect

o changes in the training set. In Section 4 , we compare our algo-

ithm to some state-of-the-art methods. We conclude in Section 5 .

. ME 

2 : A metric learning-based algorithm for optimizing 

xcluding ellipsoids 

.1. Problem formulation 

Let S = { x i } n i =1 
be a sample of n negative instances (the major-

ty class) and P = { c j } p j=1 
a set of p positive examples (the minor-

ty class), with n > > p and where x i , c j are feature vectors of R 

d .

e aim at maximizing ellipsoids centered at each positive c ∈ P ex-

luding (most of) the negative data x i , i = 1 , . . . , n. Learning such

llipsoids boils down to optimizing a Mahalanobis distance, that is

nding a positive semi-definite (PSD) d × d matrix M projecting the

ata linearly in a new space and allowing to obtain balls centered

t each positive example of maximum radius R . Let B be an upper

ound of the possible expected radius. Our algorithm, called ME 2 

or Maximum Excluding Ellipsoids, can be expressed in the follow-

ng form: 

min 

, M , ξ

1 

n 

∑ n 
i =1 ξi + μ(B − R ) 2 + λ‖ M − I ‖ 

2 
F , 

s.t. ‖ x i − c ‖ 

2 
M 

≥ R − ξi , ∀ i = 1 , . . . , n, 

ξi ≥ 0 , 

B ≥ R ≥ 0 , 

(2) 

here ‖ x i − c ‖ 2 
M 

= ( x i − c ) T M ( x i − c ) is the learned Mahalanobis

istance, ξ is the vector of slack variables, μ(B − R ) 2 + λ‖ M − I ‖ 2 
F 

s a regularization term with μ, λ> 0 the corresponding regular-

zation parameters, I the Identity matrix and ‖ · ‖ F is the Frobe-

ius nom. Note that the upper bound B of the radius is used in

(B − R ) 2 to have a convex formulation allowing us to get a unique

olution. We choose two different parameters for each part of the

egularization term to control the surface area of the sphere in the

ransformed space and the complexity of the matrix M . The pa-

ameter λ gives the possibility to control the magnitude of the en-

ries of M , and therefore the shape/orientation of the ellipsoid. In

ractice, the bigger λ is, the closer ‖ x i − c ‖ 2 
M 

to the Euclidean dis-

ance (i.e. the ellipsoid looks like a ball). On the other hand, the

arameter μ controls the size of the learned ellipsoids. An illustra-

ion of our algorithm is given in Fig. 1 . On the right, we constrain

E 2 to learn spheres (i.e. λ is set to a large value such that M

ends to be the identity matrix). On the left, we allow ME 2 to op-

imize both the orientation and the size of the ellipsoid. We can

ee that ME 2 can capture local peculiarities of the feature space. It

s worth noticing that λ and μ are key parameters to deal with

nomaly/fraud detection in imbalanced settings. Indeed, we will

how that they can be used to improve the F-Measure by con-

rolling the precision and the recall. Note that we can establish a

elationship between ME 2 and a decision tree algorithm [19] . In-

eed, in both cases, decision rules take the form of local geometric

hapes (an ellipsoid for ME 2 and a rectangle for a decision tree). In

ig. 2 , we report on the same toy example as in Fig. 1 the leaves
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Fig. 1. Illustration of the interest of learning ellipsoids (on the left) rather than sim- 

ple spheres (on the right). Optimizing the size and the orientation of the ellipsoids 

allows us to better capture local peculiarities. 

Fig. 2. Boundaries of the decision rules with ME 2 and a decision tree algorithm. The 

expressiveness of ME 2 is better to capture local specificities of the density function 

of the positives. 
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1 If this result was proposed in the context of regression and classification tasks, 

the proof techniques are general enough - by considering generic bounded and lip- 

schitz losses - so that it also holds for the setting considered in this section. 
learned by a decision tree algorithm containing each positive ex-

ample as well as the ellipsoids optimized by ME 2 . We can notice

that while decision trees build axis-parallel hyperplanes to gener-

ate the leaves, ME 2 has a better expressiveness allowing to control

the shape, the orientation and the size of the ellipsoids. We think

that this is an interesting feature that can be favorably exploited to

capture local specificities of the feature space and better estimate

the density function of the positives. 

2.2. Dual version and closed-form solution 

Note that Problem 2 can also be expressed in its dual form

which leads to a closed form solution. The Lagrangian is given

by: 

L ( α, β, δ, γ , R, ξ, M ) = 

1 

n 

n ∑ 

i =1 

ξi + μ(B − R ) 2 −
n ∑ 

i =1 

γi ξi 

−
n ∑ 

i =1 

αi 

(‖ x i − c ‖ 

2 
M 

− R + ξi 

)

+ λ‖ M − I ‖ 

2 
F − βR + δ(R − B ) , (3)

where α = (αi ) i =1 , ... ,n , γ = (γi ) i =1 , ... ,n , β and δ are the dual vari-

ables. By setting to zero all the derivatives of (3) with respect to

the primal variables we get: 

R = 

β − δ + 2 μB − ∑ n 
i =1 αi 

2 μ
, 

M = I + 

1 

2 λ

n ∑ 

k =1 

αk ( x k − c )( x k − c ) T , 

and 0 ≤ αi ≤
1 

n 

∀ i. 

The second equality shows that M is, by construction, positive

definite (PD). Fulfilling the PD constraint for free is very important
ecause it prevents the algorithm from performing a singular value

ecomposition (in O(d 3 ) ) at each step of the gradient descent. 

The dual formulation of Problem (2) is then obtained by inject-

ng the expression of both R and M in the Lagrangian (3) . The dual

ptimization is then obtained by minimizing the opposite of the

agrangian with respect to its dual variables: 

min 

,β,δ
αT 

(
1 

4 λ
G 

′ + 

1 

4 μ
1 d×d 

)
α + 

β2 

4 μ
+ 

δ2 

4 μ
+ 

αT 

(
diag(G ) −

(
B + 

β

2 μ
− δ

2 μ

)
1 d 

)
+ β

(
B − δ

2 μ

)
, 

s.t. 0 ≤ αi ≤
1 

n 

, ∀ i = 1 , . . . , n, 

β, δ ≥ 0 , 

(4)

here G is the Gram matrix defined by G i j = 〈 ( x i − c ) , ( x j − c ) 〉
nd G 

′ is the Hadamard product of G with itself. 1 d (respectively

 d×d ) represents a vector of length d (respectively a matrix of size

 × d ) where entries are equal to 1. 

. Generalization guarantees 

One of our main contributions in this paper takes the form of

 generalization guarantee on the algorithm ME 2 . Since we learn a

ocal model from a subset of training examples we need to prove

he ability of ME 2 to perform well in generalization - that is - to

xclude correctly new negative instances from the learned ellipsoid

entered at this positive example. To do so, we derive in this sec-

ion a generalization bound according to the theoretical framework

f uniform stability [8] . 

.1. Uniform stability 

Roughly speaking, an algorithm is stable if its output does not

hange significantly under a small modification of the training

ample. A formal definition is given below. 

efinition 1. [8] A learning algorithm has a uniform stability in 

β
n 

ith respect to a loss function � and a parameter set θ, with β a

ositive constant if: 

 S, ∀ i, 1 ≤ i ≤ n, sup 

x 
| � (θS , x ) − � (θS i , x ) | ≤ β

n 

, 

here S is a learning sample of size n , θS the model parameters

earned from S , θS i the model parameters learned from the sample

 

i obtained by replacing the i th example x i from S by another ex-

mple x ′ 
i 

independent from S and drawn from P . � ( θS , x ) is the loss

uffered at x . 

One can then obtain the following generalization bound 

1 : 

heorem 1 (from Bousquet and Elisseeff [8] , Thm 12) . Let δ > 0

nd n > 1 . For any algorithm with uniform stability β/ n, using a loss

unction bounded by b, with probability 1 − δ over the random draw

f S: 

 (θS ) ≤ ˆ L S (θS ) + 

2 β

n 

+ (4 β + b) 

√ 

ln 1 /δ

2 n 

, 

here L ( · ) is the true risk and ˆ L (·) its empirical estimate over S. 
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.2. Generalization bound 

Given a centroid c (representing a positive instance) and a

earning sample S = { x i } n i =1 
of negative instances drawn i.i.d. from

n unknown probability distribution P −, the set of parameters to

e learned by ME 2 is the pair ( R , M ). For convenience, we consider

he following optimization problem that is equivalent to Prob-

em 2 : 

in 

R, M 

1 

n 

∑ n 
i =1 � (R, M , x i ) + μ(B − R ) 2 + λ‖ M − I ‖ 

2 
F , 

s.t. B ≥ R ≥ 0 . 

(5) 

here � ( · ) represents the loss such that � (R, M , x i ) = 

1 

n 
[ R − ‖ x i −

 ‖ 2 M 

] + with [ ·] + the hinge loss function: [ a ] + = max (a, 0) . 

The true risk is defined by L (M , R ) = E x ∼P −� (M , R, x ) and its em-

irical estimate over the sample S by ˆ L S (M , R ) = 

1 
n 

∑ n 
i =1 � (M , R, x i )

 We also denote the regularization term as N(M , R ) = μ(B − R ) 2 +
‖ M − I ‖ 2 

F 
and assume that data are bounded by K. F S denotes the

unction to be minimized, i.e. : 

 S (M , R ) = 

ˆ L (M , R ) + N(M , R ) . 

Note here that it can easily be checked that our loss function �

s convex with respect to M and R . 

To prove a generalization bound on our algorithm ME 2 , we need

o prove that our setting verifies the definition of uniform stability.

or this purpose, we first prove that our loss function is actually

 -lipschitz in its first two arguments. 

emma 1. The loss � is k-lipschitz with respect to M and R with k =
ax (1 , 4 K 

2 ) , i.e.: for any ( M , R ), ( M 

′ , R ′ ), ∀ x : 

 � (M , R, x ) − � (M 

′ , R 

′ , x ) | ≤ k ‖ (M , R ) − (M 

′ , R 

′ ) ‖ , 

here ‖ (M , R ) − (M 

′ , R ′ ) ‖ = | R − R ′ | + ‖ M − M 

′ ‖ F . 
roof. The proof uses successively the fact that the hinge loss is

-lipschitz and a property of the absolute value. We then use the

auchy-Schwarz inequality and classic properties on norms. �

We now need a technical lemma on the objective function F S . 

emma 2. Let S be a learning sample, let F S and F S i be two objective

unctions with respect to samples S and S i and let ( M , R ) and ( M 

i , R i )

e their respective minimizers. We also define 
(M , R ) = (M 

i , R i ) −
(M , R ) and recall that N(M , R ) = μ(B − R ) 2 + λ‖ M − I ‖ 2 

F 
. We have,

or all t ∈ [0, 1] : 

N(M , R ) − N((M , R ) + t
(M , R )) 

+ N((M 

i , R 

i ) − N((M 

i , R 

i ) − t
(M , R )) 

≤ 2 t max (1 , 4 K 

2 ) 

n 

‖ 
(M , R ) ‖ . 

roof. The left hand side of the previous inequality can be written

s follows: 

μ[(B − R ) 2 + (B − R 

i ) 2 − (B − (R + t
R )) 2 − (B − (R 

i − t
R )) 2 ]

 λ[ ‖ M − I ‖ 

2 
F + ‖ M 

i − I ‖ 

2 
F − ‖ M + t
M − I ‖ 

2 
F − ‖ M 

i − t
M − I ‖ 

2 
F 

= μθ(R ) + λτ (M ) (for the sake of simplification)

(

he upper bound is then given by using the same development as

he one given in the proof of lemma 20 from Bousquet and Elisseeff

8] . �

We are now able to prove the stability of our algorithm. 

roposition 1. It exists a positive constant κ such that the algorithm

E 2 is uniformly stable with β = 

2( max (1 , 4 K 

2 )) 2 

κ min (μ, λ) 
. 
roof. We give here the main steps of the proof, using notations

ntroduced before. 

Setting t = 

1 

2 
we have from Lemma 2 

θ (R ) + λτ (M ) ≤ max (1 , 4 K 

2 ) 

n 

‖ 
(M , R ) ‖ . (7)

hen, by developing the left hand side of equation (7) we have: 

(R 

i − R ) 2 + λ‖ M 

i − M ‖ 

2 
F ≤

2 max (1 , 4 K 

2 ) 

n 

‖ 
(M , R ) ‖ . (8)

ecall that ‖ 
(M , R ) ‖ = | R − R i | + ‖ M 

i − M ‖ F . Because we are

orking in a finite space, all the norms are equivalent, i.e. it exists

 positive constant κ such that, ∀ (R, R i ) ∈ R 

+ , ∀ (M , M 

i ) ∈ R 

d×d we

ave: 

(| R − R 

i | + ‖ M 

i − M ‖ F ) 
2 ≤ (R − R 

i ) 
2 + ‖ M 

i − M ‖ 

2 
F . (9) 

he left hand side is equal to κ‖ 
( M , R ) ‖ 2 . Thus, by multiplying

9) by min ( μ, λ) and using the inequality (8) , we have: 

 
(M , R ) ‖ ≤ 2 max (1 , 4 K 

2 ) 

nκ min (μ, λ) 
. 

inally, starting from the left-hand side of Definition 1 and apply-

ng Lemma 1 and the previous inequality leads to our result. 

�

It remains to show that our hinge-loss function � is bounded,

hich is the case because the radius is bounded by B , so is � . 

Given the stability constant and the fact that the loss is

ounded, using Theorem 1 , we obtain our final result: 

heorem 2. Let δ > 0 and n > 1 . There exists a constant κ > 0, such

hat with probability at least 1 − δ over the random draw over S, we

ave for any ( M , R ) solution of Problem 5 : 

 (M , R ) ≤ ˆ L S (M , R ) + 

4( max (1 , 4 K 

2 )) 2 

nκ min (μ, λ) 

+ 

(
8( max (1 , 4 K 

2 )) 2 

κ min (μ, λ) 
+ B 

)√ 

ln 1 /δ

2 n 

. 

This generalization bound holds for any positive center c . If one

as p positive centers, by the union bound, we can extend the

revious result for each of the p centers with probability 1 − δ/p

howing that the learned ellipsoids can exclude negative instances

ith high probability. We can notice that the bound implicitly de-

ends on the dimension of the data through the hyperparameters

and λ. 

. Experiments 

.1. Algorithms and datasets 

In this section, we aim at evaluating the behavior of ME 2 in

omparison to some state of the art algorithms. Those methods

ave been selected to characterize some specificities of ME 2 . 

• Since we established a link between our local ellipsoids and the

rules induced by decision trees in the form of local rectangles

( Fig. 2 ), we compare ME 2 with standard decision trees (DT). The

objective here is to show that the learned ellipsoids better cap-

ture the local information of the input space. 
• To deal with imbalanced datasets, a commonly used strategy

consists of sampling the data to fix the imbalancy problem.

Therefore, we also learn a decision tree DT O (resp. DT U ) after

a pre-processing step which consists of oversampling (with re-

placement) the minority class examples (resp. undersampling

the majority class examples). We also combine the two previ-

ous approaches (DT ). Finally, we apply a SMOTE-like strategy
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Table 1 

Number of instances, number of features, Imbalance 

ratio (i.e. number of positives over the number of in- 

stances). 

Dataset Nb. of ex. Nb. of feat. IR 

Yeast3 1 484 8 10.9% 

Abalone 4 177 8 10.7% 

Wine 1 599 11 3.3% 

Abalone 17 2 338 8 2.5% 

Yeast6 1 484 8 2.4% 

Abalone 20 1 916 8 1.4% 

Bank Fraud 15 0 0 0 17 1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Average ranks over all the datasets (top) and over the five most imbalanced 

datasets (bottom). 
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[10] (DT SMOTE ) which creates synthetic minority class examples

in the neighborhood of the positive data. The goal of this com-

parison is to show how ME 2 behaves even if it does not resort

to sampling processes . 
• When the proportion of positive examples is too small, some

Support Vector Data Description methods (SVDD) [3,17,21] - like

one-class SVMs [13] - address the anomaly detection problem

as an unsupervised outlier detection task. We run here one-

class SVMs with two kernels: a linear kernel (LOCSVM) and a

RBF kernel (KOCSVM). The objective of this comparison is to

check if ME 2 makes a good use of the few positive labels com-

pared to unsupervised methods. We also make use of the labels

and run standard linear SVMs (LSVM), and RBF kernel-based

SVMs (KSVM). 

All the classifiers are trained using the corresponding machine

learning packages in R 

2 , that is C50 for the decision trees, e1071

for the SVMs, DMwR for SMOTE and Rsolnp for ME 2 . 

The experiments are performed on 6 datasets coming from the

UCI and KEEL databases 3 and one proprietary database on a bank

fraud detection task. Their characteristics (number of examples,

features, imbalance ratio IR) are described in Table 1 . Note that the

categorical variables have been replaced by binary features. 

4.2. Experimental setup 

As explained in the introduction, the classic accuracy is not a

suitable criterion to address issues due to the presence of imbal-

anced data. For this reason, we evaluate the algorithms using the

F-measure defined as the harmonic mean of the Precision and Re-

call criteria, where F-measure = 

2 ×Precision ×Recall 
Precision + Recall 

with P recision =
T P 

T P+ F P and Recall = 

T P 
T P+ F N , where TP is the number of true posi-

tives, FP the number of false positives and TN the number of true

negatives. 

For each series of experiments, the dataset is divided into

80%/20%. A 2-fold cross-validation is applied on the first set S

(while preserving the same IR in each fold) to tune the hyperpa-

rameters. The second set is used as a test set. Each experiment is

repeated 10 times and the reported results are the averages over

the 10 trials. 

Remember that we learn an ellipsoid centered at each positive

example of S . This ellipsoid defines in some way the local region

of the projection space which is under the influence of the consid-

ered positive example. In this context, at both validation (to tune

the parameters) and test time, a query x ′ is associated to its clos-

est positive example N x ′ (with respect to the Euclidean distance) in

the training set. Then, in order to take into account the local den-

sity of positives and negatives in the corresponding ellipsoid, and
2 https://www.r-project.org/ . 
3 These datasets can be found either on the UCI repository 

( https://archive.ics.uci.edu/ml/datasets.html) or the KEEL website 

(http://sci2s.ugr.es/keel/imbalanced.php?order = ir#sub60). 

r

 

 

 

 

ollowing the idea suggested in Barandela et al. [4] , we apply the

ollowing decision rule. x ′ will be predicted as positive if: 1) It is

nside the ellipsoid centered at N x ′ . This means that x ′ is actually

nder the influence of N x ′ which occurs when the corresponding

earned Mahalanobis distance verifies: ‖ x ′ − N x ′ ‖ M N 
x ′ 

≤ R N 
x ′ , where

 N 
x ′ is the PSD matrix learned by ME 2 corresponding to the ellip-

oid centered at N x ′ and R N 
x ′ is its associated radius. 2) Its nearest

eighbor in the ellipsoid is a positive example with respect to the

earned local distance ‖ x ′ − x ‖ M N 
x ′ 

. Otherwise, x ′ is predicted as

egative. 

Note that the hyper-parameters μ and λ are tuned respectively

n the range {0.75, 0.8, 0.85, 0.9, 0.95, 1, 2, 10} and { 10 −6:2 } by

aximizing the F-Measure for each local model according to the

revious rule. 

.3. Results 

The results are reported in Table 2 . The datasets are sorted from

he least to the most imbalance ratio to see the effect of ME 2 with

 decreasing rate of positive examples. We can make the following

emarks: 

• On average, ME 2 outperforms all the other methods even if it

does not resort to sampling processes. As shown in Fig. 3 , its

average rank over the 7 datasets ( 2.6 ) is better than the oth-

ers. If we focus on the 5 datasets with large imbalancy ( Wine,

https://www.r-project.org/
https://archive.ics.uci.edu/ml/datasets.html)
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Table 2 

Comparison of the methods in terms of F-measure over 10 runs. The best results are indicated in bold font. The last column reports the 

average running time (in sec) for one run. 

Algorithm Yeast3 Abalone Wine Abalone17 Yeast6 Abalone20 Bank fraud Time 

DT 0.77 ± 0.06 0.64 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.51 ± 0.23 0.10 ± 0.15 0.00 ± 0.00 3.2 

DT O 0.75 ± 0.06 0.64 ± 0.04 0.06 ± 0.09 0.35 ± 0.08 0.45 ± 0.12 0.30 ± 0.15 0.04 ± 0.03 3.5 

DT U 0.76 ± 0.08 0.67 ± 0.03 0.09 ± 0.11 0.28 ± 0.11 0.49 ± 0.11 0.19 ± 0.20 0.04 ± 0.03 2.4 

DT OU 0.72 ± 0.04 0.61 ± 0.04 0.15 ± 0.06 0.34 ± 0.05 0.36 ± 0.12 0.30 ± 0.12 0.05 ± 0.04 2.6 

DT SMOTE 0.65 ± 0.10 0.57 ± 0.07 0.14 ± 0.12 0.24 ± 0.09 0.18 ± 0.09 0.27 ± 0.13 0.04 ± 0.03 28.1 

LSVM 0.67 ± 0.05 0.62 ± 0.01 0.14 ± 0.08 0.29 ± 0.01 0.30 ± 0.05 0.23 ± 0.02 0.03 ± 0.02 702.5 

RBFSVM 0.66 ± 0.09 0.63 ± 0.03 0.07 ± 0.08 0.17 ± 0.06 0.36 ± 0.09 0.13 ± 0.13 0.00 ± 0.00 39.2 

LOCSVM 0.01 ± 0.02 0.11 ± 0.03 0.02 ± 0.07 0.10 ± 0.05 0.00 ± 0.00 0.05 ± 0.13 0.03 ± 0.01 28.3 

KOCSVM 0.01 ± 0.02 0.21 ± 0.04 0.01 ± 0.07 0.06 ± 0.03 0.00 ± 0.00 0.05 ± 0.11 0.00 ± 0.00 1472.0 

ME 2 0.67 ± 0.06 0.61 ± 0.03 0.20 ± 0.09 0.46 ± 0.07 0.46 ± 0.08 0.30 ± 0.07 0.05 ± 0.02 2.9 
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Abalone17, Yeast6, Abalone20 and the Bank Fraud ), ME 2 is even

better with an average rank of 1.4 . 
• For the first two datasets (i.e. Yeast3 and Abalone ) where the

rate of positive examples is greater than 10%, our method is

not very useful. This behavior can be explained by two reasons:

(i) when the number of learned ellipsoids grows, their overlap-

ping is larger and larger and therefore the False Positive rate

increases; (ii) a large number of ellipsoids induces an increas-

ing risk of generating close ellipsoids with different orientations

and shapes. About this second point, an interesting perspective

would consist of constraining close positive examples to have

similar ellipsoids. 
• Compared with decision trees, these experiments show that

ME 2 has a much better capacity to capture the local speci-

ficities of the feature space than the local rectangles learned

by decision trees. For three datasets, it is worth noticing that

decision trees even do not capture anything ( Wine, Abalone17,

Abalone20 ). 
• The results obtained by one-class SVMs are much worse than

the other methods. This behavior shows that for all the

datasets, including the bank fraud database, the positive exam-

ples cannot be considered as outliers and that their underlying

distribution is likely to be multimodal. 
• ME 2 works better than SVMs while the latter use a reweighting

scheme in the objective function to balance the data. 

We also report in Table 2 the average running time for one run

f each method. Note that since ME 2 can be parallelized, we report

he running time required for tuning and solving the optimization

roblem 2 . We can see that since ME 2 learns matrices that directly

atisfy the positive semi definiteness, our method is efficient, i.e.

ery close to decision trees. However, note that if one uses ME 2 

ithout parallelizing the learning of the p ellipsoids, the running

ime will be on average p times the result reported in Table 2 . But

E 2 will be still efficient (at least better then kernelized-SVMs)

ince p is supposed to be very small in highly imbalanced scenar-

os. 

. Conclusion 

We have presented a method to learn Maximum Excluding El-

ipsoids in the context of imbalanced binary classification tasks.

ur algorithm, called ME 2 , is based on simple local linear mod-

ls. Moreover, we have proven its uniform stability which takes the

orm of a generalization bound on the learned matrix M . We have

hown that our method is particularly efficient and robust when

he rate of positive examples is very small. The reason comes from

he fact that ME 2 is able to learn decision boundaries in the form

f ellipsoids (via a metric learning-based strategy) that are opti-

ized locally to better fit the specificities of the space. ME 2 is

ased on a very simple decision rule looking for the nearest ellip-

oid to a test query. We think that this rule may benefit from fur-
her investigation, e.g. by considering a combination of ellipsoids

o predict the label of a test data. This would be possible by us-

ng a graph over the ellipsoids centers where information would

e shared like in an information network. Besides, from a theo-

etical point of view, we have derived a guarantee on the learned

atrix M and radius R . Since our decision rule is close to a nearest

eighbor classifier decision rule, it would be interesting to estab-

ish a link between the quality of M and R and the generalization

rror of such a classifier. Another perspective would be to partition

he positive example space and constrain the ellipsoids to be simi-

ar in terms of orientation (using some regularization) if they have

een learned from the same cluster. Finally, in a context of fraud

etection where the fraud strategy tends to evolve through time,

eveloping an online version of our algorithm might be relevant to

etter capture distribution shifts. 
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