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Abstract

In an imbalanced setting:
→ optimizing the classical accuracy
tends to predict only the majority
class;
→ optimizing imbalance-proof mea-
sures (as the F-Measure) is a tough
task due to its non-convexity;
⇒ Solution: approximate F-
measure optimization by cost-sensitive
approach.

Based on S. P. Parambath et al. work
[1] and driven by theoretical guaran-
tees, to tackle imbalanced problems
we propose:

• a tighter bound than the one
given in [1];

• CONE, an algorithm in which
the weights of each classes are
updated iteratively;

• a way to prune the search space
of the weights for low values of
F-Measure.

Notations and Base Result

Context and Notations

• Only binary setting is presented, but
our bounds can be derived to be
used in a multi-class setting.

• e = (e1, e2) = (FN,FP ) the error
profile,

• F =
(1 + β2)(P − e1)

(1 + β2)P − e1 + e2
the F-

Measure,

• a(t) = (1 + β2 − t, t) a weight-
ing function, assigns cost of miss-
classification on each classes,

• g an evaluation of a for a value of t,

• h ∈ H a classifier,

• ε0 upper bound on the norm be-
tween two evaluations of a,

• ε1 the sub-optimality of a classifier,

• Φ a kind of Lipschitz constant on F .

Base Result [1]

Let ε0 ≥ 0 and ε1 ≥ 0, and assume that there exists Φ > 0 such that for all e, e′

satisfying F (e′) > F (e), we have:

F (e′)− F (e) ≤ Φ〈a(F (e′)), e− e′〉.
Then , let us take e? ∈ argmax F (e′) and denote a? = a(F (e?)). Let further-
more g ∈ Rd+ and h ∈ H satisfying the following two conditions:

(i) ‖g − a?‖2 ≤ ε0, (ii) 〈g,E(h)〉 ≤ min
e′∈E(H)

〈g, e′〉+ ε1.

We have:
F (E(h)) ≥ F (e?)− Φ(2ε0M + ε1), M = max

e′∈E(H)
‖e′‖2,

where F (e?) is the optimal value of the F-Measure.

Geometric Interpretation

According to [1], ‖a(t1)−a(t)‖2 ≤ 2‖t1−t‖2 = ε0,
the bound can be rewritten as follows:

F (e(t)) ≤ F (e(t1)) + 4ΦM‖t1 − t‖2 + Φε1.

This can be identified as the definition of Lip-
schitz function applied to the F-Measure with
respect to t, with a Lipschitz constant equal to
4ΦM and an offset of Φε1.

CONE: a bound driven search algorithm

Let us consider t, t1 ∈ [0, 1] be two values used to
assign costs and e(t), e(t1) the vector of miss-classified
examples. Under the assumptions of the Base Result
and using the same notations we have :

A tighter slope:

F (e(t)) ≤ F (e(t1))+Φ(
√

2(‖e(t1)‖2 +M ′)‖t1 − t‖2)+Φε1.

In other words, we refined the slope of the cones to√
2Φ (‖e(t1)‖2 +M ′)), where M ′ is defined as:

max
e′
‖e′‖2 s.t F (e′) > F (e(t1)).

Furthermore, if t > t1 then :
Search space pruning:

Fβ(e(t)) ≤ (1 + β2)

1+β2

t1
TP (t1)

β2 1+β2

t1
TP (t1) + P

.

Intuition: if TP small, decreasing the weights on the
Positive class shouldn’t be beneficial.

CONE Algorithm

Input: β, //F-measure parameter
Input: S, //training set
Input: wLearn, //weighted-learning algorithm
Input: shouldStop. //stopping criterion

Initialize i = 0 //iteration number
Initialize Z0 = ∅ //excluded zones
repeat
i = i+ 1
ti = findNextT (Zi−1)
classifieri = wLearn(1 + β2 − ti, ti)
Fi = Fβ(classifieri, S)
Vi = unreachableZone(ti, Fi, S)
Zi = Zi−1 ∪ Vi

until shouldStop(i, classifieri,Zi)

An illustration of Cone with search space pruning

ν1: First cone halves the search space: t1 = 1

→ Highest remaining F = 1 for t ∈ [0, 0.6]

ν2: Next cone halves this interval: t2 = 0.3

→ Highest remaining F = 0.7 for t ∈ [1.3, 2]

ν3: Next cone halves this interval: t3 = 1.65

→ Highest remaining F = 0.7 for t ∈ [1.3, 1.35]

ν∞: Until we reach the best F possible

Practical Evaluation of Theoretical Guarantees
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Examples of runs of our method
(blue points and shaded area) and
of the grid wrapper (black crosses)
both with a cost-sensitive SVM
classifier with C = 1. We also rep-
resent the corresponding evolution
of the F-Measure and of the con-
sidered bound as a function of the
number of CONE steps and [1] grid
size.

F1-Measure for Logistic Regression and SVM algorithms (averaged over 5 experiments).
Number of CONE steps and grid size are both limited to 9 and 4 SVMs.

Steps 9 4

Dataset SVM? SVMC SVM+
C SVM? SVMC SVM+

C

Adult 66.1 (0.1) 66.5 (0.1) 66.5 (0.1) 65.8 (0.3) 66.5 (0.03) 66.5 (0.04)

Abalone10 30.2 (2.5) 31.0 (1.1) 32.3 (1.2) 30.7 (2.8) 12.2 (14.5) 30.8 (1.1)

IJCNN’01 61.6 (0.4) 61.0 (0.6) 61.6 (0.6) 61.0 (0.5) 61.0 (0.6) 61.0 (0.6)

Abalone12 16.1 (3.5) 12.2 (7.0) 17.0 (3.5) 0.0 (0.0) 0.0 (0.0) 15.9 (3.7)

Yeast 24.5 (16.3) 34.8 (8.3) 32.3 (12.2) 33.0 (18.0) 14.7 (12.0) 35.0 (8.4)

Wine 11.7 (11.3) 11.3 (10.8) 19.4 (6.6) 0.0 (0.0) 0.0 (0.0) 17.7 (4.4)

"?": Reproduction of [1] ; "C ": CONE ; "+C ": CONE with pruning method

Conclusion

In this work, we derive a tighter bound than the one obtained [1]. Moreover,
combining it with a search space algorithm we manage to match, and even
outmatch, [1] method with less classifiers and without needing an arbitrary sized
grid search.
We now aim to derive a similar search space pruning on the left (i.e. for smaller
values of t). We also aim to extend the applications, using neural networks for
instance and see how to deal with the notion of sub-optimality in the non convex
cases.
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