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Abstract
In an imbalanced setting:

→ optimizing the classical accuracy
tends to predict only the majority
class;

→ optimizing imbalance-proof mea-
sures (as the F-Measure) is a tough
task due to its non-convexity;

⇒ approximate F-measure optimiza-
tion by cost-sensitive approach.

We propose to:

• Write the difference of F-
measures between the errors
made by two hypotheses.

• Give an upper bound on the op-
timal reachable F-measure given
the error made by the classifier
and the used cost sensitive pa-
rameters.

• CONE, an algorithm to itera-
tively optimize the F-measure.

Notations and Base Result

Binary Classification

• e = (e1, e2) = (FN,FP ) the error
profile obtained from h.

• A function to assign costs on each
class a(t) = (1 + β2 − t, t).

• F (e) =
(1 + β2)(P − e1)

(1 + β2)P − e1 + e2
the as-

sociated F-measure.

Property F-measure

The level sets of the F-measure are hy-
perplanes: given t ∈ [0, 1], F (e) = t if
and only if ∃a, b, two functions such that
〈a(t), e〉+ b(t) = 0.
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A bound on the F-measure

Step 1: impact of a change in the error profile. Given two error profiles e
and e′ and the previous property of the F-measure:

〈a(F (e′)), e− e′〉 = 〈a(F (e′)), e〉+ b(F (e′)),

= (F (e′)− F (e)) ·
(
(1 + β2)P1 − e1 + e2

)
,

which leads to:
F (e′)− F (e) = Φe · 〈a(F (e′)), e− e′〉, (1)

Step 2: bounding the difference of F-measures. Suppose that a classifier
trained with a(t) leads to e and F (e) and consider e′ obtained from an hypo-
thetical classifier learned with a(t′). Then, from Eq;(1), we have:

F (e′)− F (e) = Φe (〈a(t′), e〉 − 〈a(t′), e′〉) ,
≤ Φe (〈a(t), e′〉+ ε1 − 〈a(t′), e′〉+ (t′ − t)(e2 − e1)) ,

≤ Φeε1 + Φe · (e2 − e1 − (e′2 − e′1))(t′ − t),

where ε1 : sub-optimality of the learned classifier w.r.t. the 0-1 loss

〈a(t), e〉 ≤ ε1 + min
e′∈E(H)

〈a(t), e′〉

−→ e′ = (e′1, e
′
2) is unknown→ bound it such that F (e′) > F (e).

CONE: a Bound Driven Search Algorithm

Proposition. Let e be the error profile obtained
with a classifier trained with the parameter t, F (e)
its associated F-measure value, Φe as defined in
Eq. (1), and ε1 > 0 the sub-optimality of our linear
classifier.

Then for all t′ < t:

F (e′) ≤ F (e) + Φeε1 + Φe · (e2 − e1 −Mmax)(t′ − t),

where Mmax = max
e′′∈E(H)

s.t. F (e′′)>F (e)

(e′′2 − e′′1)

and, for all t′ > t:

F (e′) ≤ F (e) + Φeε1 + Φe · (e2 − e1 −Mmin)(t′ − t),

where Mmin = min
e′′∈E(H)

s.t. F (e′′)>F (e)

(e′′2 − e′′1).

A Geometric Interpretation

Our bound on F (e′) can been seen the unreach-
able region of F-measure in the (t, F )−space.

An illustration of CONE step by step

Practical Evaluation of Theoretical Guarantees

Examples of runs on Abalone12
top: wrapper from [1]; bottom:

CONE;
both with SVM classifier (C = 1).

On Abalone12, in function of the number of CONE steps and [1] grid size:
left: on train set, evolution of the F-Measure and of the considered bound
right: on test set, evolution of the F-Measure

Results

• A more informative bound on
the optimal F-measure than
Parambath et al. [1].

• A faster convergence than
Parambath et al. [1].

• Better results in average with
a small number of iterations
compared to [1,2,3].

Dataset SVM SVMI.R. SVMG SVMC SVMT
C LRT LRT

I.R. LRT
G LRB

Adult 62.5 (0.2) 64.9 (0.3) 66.4 (0.1) 66.5 (0.1) 66.4 (0.1) 66.5 (0.1) 66.5 (0.1) 66.5 (0.1) 66.6 (0.1)

Abalone10 0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 31.8 (1.9) 30.8 (2.2) 30.7 (1.9) 30.7 (1.9) 31.6 (0.6)

Satimage 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 30.9 (2.0) 21.2 (11.1) 28.6 (1.9) 28.6 (1.9) 21.4 (4.6)

IJCNN 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 62.6 (0.4) 59.4 (0.5) 56.5 (0.3) 56.5 (0.3) 59.2 (0.3)

Abalone12 0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 16.3 (3.0) 15.5 (3.1) 17.0 (3.3) 17.0 (3.3) 17.7 (3.7)

Pageblocks 48.1 (5.8) 39.6 (4.7) 66.4 (3.2) 62.8 (3.9) 67.6 (4.0) 59.2 (8.1) 55.9 (6.4) 55.9 (6.4) 55.7 (5.7)

Yeast 0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 35.4 (15.6) 37.4 (10.1) 39.9 (6.5) 27.6 (6.8) 27.6 (6.8)

Wine 0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 19.3 (7.9) 21.5 (3.7) 25.2 (4.5) 25.2 (4.5) 18.3 (7.2)

Average 19.4 (0.8) 34.2 (2.8) 40.3 (3.5) 40.5 (3.5) 41.3 (4.4) 38.9 (5.2) 40.0 (3.1) 38.5 (3.2) 37.3 (3.6)

F-Measure for Logistic Regression (LR) [3] and SVM algorithms (averaged over 5 experiments).
"I.R." I.R. based class costs; "G": Reproduction of [1] ; "C": CONE "T " thresholded predictions; "B": Bissection [2]

Perspectives

• Extend our study to more com-
plex class of hypotheses (non lin-
ear hypotheses such as neural net-
works).

• Prove the convergence of our algo-
rithm.

• Work on the notion of sub-
optimality to improve the bound.

• Work on a generalization bound on
the F-measure.
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