From Cost-Sensitive Classification to Tight F-measure Bounds

K. Bascol ${ }^{1,3}$, R.Emonet ${ }^{1}$, E. Fromont ${ }^{2}$, A.Habrard ${ }^{1}$, G. Metzler ${ }^{1,4}$, and M. Sebban ${ }^{1}$ 1. Univ. Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR CNRS 5516, F-42023, Saint-Etienne, France 2. Univ. Rennes 1, IRISA/Inria, 35042 Rennes cedex, France 3. BLUECIME inc., France and 4. BLITZ inc., France

Abstract

In an imbalanced setting:

\rightarrow optimizing the classical accuracy tends to predict only the majority class;
\rightarrow optimizing imbalance-proof measures (as the F -Measure) is a tough task due to its non-convexity;
\Rightarrow approximate F-measure optimization by cost-sensitive approach.

We propose to:

- Write the difference of F measures between the errors made by two hypotheses.
- Give an upper bound on the optimal reachable F-measure given the error made by the classifier and the used cost sensitive parameters.
- CONE, an algorithm to iteratively optimize the F-measure.

Notations and Base Result

Binary Classification

- $\boldsymbol{e}=\left(e_{1}, e_{2}\right)=(F N, F P)$ the error profile obtained from h.
- A function to assign costs on each class $\boldsymbol{a}(t)=\left(1+\beta^{2}-t, t\right)$.
- $F(\boldsymbol{e})=\frac{\left(1+\beta^{2}\right)\left(P-e_{1}\right)}{\left(1+\beta^{2}\right) P-e_{1}+e_{2}}$ the as sociated F -measure.

Property F-measure

The level sets of the F-measure are hyperplanes: given $t \in[0,1], F(\boldsymbol{e})=t$ if and only if $\exists a, b$, two functions such that $\langle\boldsymbol{a}(t), \boldsymbol{e}\rangle+b(t)=0$.

A bound on the F-measure

Step 1: impact of a change in the error profile. Given two error profiles e and e^{\prime} and the previous property of the F-measure

$$
\begin{aligned}
\left\langle\boldsymbol{a}\left(F\left(\boldsymbol{e}^{\prime}\right)\right), \boldsymbol{e}-\boldsymbol{e}^{\prime}\right\rangle & =\left\langle\boldsymbol{a}\left(F\left(\boldsymbol{e}^{\prime}\right)\right), \boldsymbol{e}\right\rangle+b\left(F\left(\boldsymbol{e}^{\prime}\right)\right), \\
& =\left(F\left(\boldsymbol{e}^{\prime}\right)-F(\boldsymbol{e})\right) \cdot\left(\left(1+\beta^{2}\right) P_{1}-e_{1}+e_{2}\right),
\end{aligned}
$$

which leads to:

$$
\begin{equation*}
F\left(\boldsymbol{e}^{\prime}\right)-F(\boldsymbol{e})=\Phi_{e} \cdot\left\langle\boldsymbol{a}\left(F\left(\boldsymbol{e}^{\prime}\right)\right), \boldsymbol{e}-\boldsymbol{e}^{\prime}\right\rangle, \tag{1}
\end{equation*}
$$

Step 2: bounding the difference of F-measures. Suppose that a classifier trained with $\boldsymbol{a}(t)$ leads to e and $F(e)$ and consider e^{\prime} obtained from an hypothetical classifier learned with $\boldsymbol{a}\left(t^{\prime}\right)$. Then, from Eq;(1), we have:

$$
\begin{aligned}
F\left(\boldsymbol{e}^{\prime}\right)-F(\boldsymbol{e}) & =\Phi_{\boldsymbol{e}}\left(\left\langle\boldsymbol{a}\left(t^{\prime}\right), \boldsymbol{e}\right\rangle-\left\langle\boldsymbol{a}\left(t^{\prime}\right), \boldsymbol{e}^{\prime}\right\rangle\right), \\
& \leq \Phi_{\boldsymbol{e}}\left(\left\langle\boldsymbol{a}(t), \boldsymbol{e}^{\prime}\right\rangle+\varepsilon_{1}-\left\langle\boldsymbol{a}\left(t^{\prime}\right), \boldsymbol{e}^{\prime}\right\rangle+\left(t^{\prime}-t\right)\left(e_{2}-e_{1}\right)\right), \\
& \leq \Phi_{\boldsymbol{e}} \varepsilon_{1}+\Phi_{\boldsymbol{e}} \cdot\left(e_{2}-e_{1}-\left(e_{2}^{\prime}-e_{1}^{\prime}\right)\right)\left(t^{\prime}-t\right),
\end{aligned}
$$

where ε_{1} : sub-optimality of the learned classifier w.r.t. the 0-1 loss

$$
\langle\boldsymbol{a}(t), \boldsymbol{e}\rangle \leq \varepsilon_{1}+\min _{\boldsymbol{e}^{\prime} \in \mathcal{E}(\mathcal{H})}\left\langle\boldsymbol{a}(t), \boldsymbol{e}^{\prime}\right\rangle
$$

$\longrightarrow \boldsymbol{e}^{\prime}=\left(e_{1}^{\prime}, e_{2}^{\prime}\right)$ is unknown \rightarrow bound it such that $F\left(\boldsymbol{e}^{\prime}\right)>F(\boldsymbol{e})$.

CONE: a Bound Driven Search Algorithm

Proposition. Let e be the error profile obtained with a classifier trained with the parameter $t, F(e)$ its associated F-measure value, Φ_{e} as defined in Eq. (1), and $\varepsilon_{1}>0$ the sub-optimality of our linea classifier.

Then for all $t^{\prime}<t$:
$F\left(\boldsymbol{e}^{\prime}\right) \leq F(e)+\Phi_{e} \varepsilon_{1}+\Phi_{e} \cdot\left(e_{2}-e_{1}-M_{\max }\right)\left(t^{\prime}-t\right)$,
where $M_{\text {max }}=\max _{\substack{\left.e^{\prime \prime} \in \mathcal{E} \mathcal{H}\right)}}\left(e_{2}^{\prime \prime}-e_{1}^{\prime \prime}\right)$ $e^{\prime \prime} \in \mathcal{E}(\mathcal{H})$
s.t. $F\left(e^{\prime \prime}\right)>F(e)$
and, for all $t^{\prime}>t$:
$F\left(\boldsymbol{e}^{\prime}\right) \leq F(e)+\Phi_{e} \varepsilon_{1}+\Phi_{e} \cdot\left(e_{2}-e_{1}-M_{\min }\right)\left(t^{\prime}-t\right)$,
where $M_{\text {min }}=\min _{\substack{e^{\prime \prime} \in \mathcal{E}(\mathcal{H})}}\left(e_{2}^{\prime \prime}-e_{1}^{\prime \prime}\right)$.
$\quad e^{\prime \prime} \in \mathcal{E}(\mathcal{H})$
s.t. $F\left(e^{\prime \prime}\right)>F(e)$

A Geometric Interpretation

Our bound on $F\left(e^{\prime}\right)$ can been seen the unreachable region of F -measure in the (t, F)-space.

An illustration of CONE step by step

Practical Evaluation of Theoretical Guarantees

Examples of runs on Abalone12 top: wrapper from [1]; bottom: both with SVM classifier ($C=1$).

On Abalone12, in function of the number of CONE steps and [1] grid size left: on train set, evolution of the F-Measure and of the considered bound right: on test set, evolution of the F-Measure

Results

- A more informative bound on the optimal F-measure than Parambath et al. [1].
- A faster convergence than Parambath et al. [1].
- Better results in average with a small number of iterations compared to [1,2,3].

References

[1] S. P. Parambath, N. Usunier, and Y. Grandvalet, Optimizing F-Measures by Cost-Sensitive Classification, NIPS 2014.
[2] H. Narasimhan, H. Ramaswamy, A. Saha, and S. Agarwal, Consistent Multiclass Algorithms for Complex Performance Measures, ICML 2015
[3] O. Koyejo, N. Natarajan, P. Ravikumar, and I. . Dhillon, Consistent Binary Classification with Generalized Performance Metrics, NIPS 2014.

