From Cost-Sensitive Classification to Tight F-measure Bounds

K. Bascol^{1,3}, R.Emonet¹, E. Fromont², A.Habrard¹, G. Metzler^{1,4}, and M. Sebban¹

1. Univ. Lyon, UJM-Saint-Etienne, Laboratoire Hubert Curien UMR CNRS 5516, F-42023, Saint-Etienne, France

2. Univ. Rennes 1, IRISA/Inria, 35042 Rennes cedex, France

3. BLUECIME inc., France and 4. BLITZ inc., France

Abstract

Notations and Base Result

In an **imbalanced** setting:

 \rightarrow optimizing the classical accuracy tends to predict only the majority class;

 \rightarrow optimizing imbalance-proof measures (as the F-Measure) is a tough task due to its non-convexity;

 \Rightarrow approximate F-measure optimization by cost-sensitive approach.

We propose to:

Binary Classification

- $e = (e_1, e_2) = (FN, FP)$ the error profile obtained from h.
- A function to assign costs on each class $a(t) = (1 + \beta^2 - t, t)$.

• $F(e) = \frac{(1+\beta^2)(P-e_1)}{(1+\beta^2)P-e_1+e_2}$ the associated F-measure.

Property F-measure

A bound on the F-measure

Step 1: impact of a change in the error profile. Given two error profiles *e* and e' and the previous property of the F-measure:

$$\boldsymbol{a}(F(\boldsymbol{e}')), \boldsymbol{e} - \boldsymbol{e}' \rangle = \langle \boldsymbol{a}(F(\boldsymbol{e}')), \boldsymbol{e} \rangle + b(F(\boldsymbol{e}')), \\ = (F(\boldsymbol{e}') - F(\boldsymbol{e})) \cdot ((1 + \beta^2)P_1 - e_1 + e_2)$$

which leads to:

$$F(e') - F(e) = \Phi_e \cdot \langle a(F(e')), e - e' \rangle, \qquad (1)$$

- Write the difference of Fmeasures between the errors made by two hypotheses.
- Give an upper bound on the optimal reachable F-measure given the error made by the classifier and the used cost sensitive parameters.
- CONE, an algorithm to iteratively optimize the F-measure.

The level sets of the F-measure are hyperplanes: given $t \in [0,1]$, F(e) = t if and only if $\exists a, b$, two functions such that $\langle \boldsymbol{a}(t), \boldsymbol{e} \rangle + b(t) = 0.$

Step 2: bounding the difference of F-measures. Suppose that a classifier trained with a(t) leads to e and F(e) and consider e' obtained from an hypothetical classifier learned with a(t'). Then, from Eq;(1), we have:

$$(\mathbf{e}') - F(\mathbf{e}) = \Phi_{\mathbf{e}} \left(\langle \mathbf{a}(t'), \mathbf{e} \rangle - \langle \mathbf{a}(t'), \mathbf{e}' \rangle \right),$$

$$\leq \Phi_{\mathbf{e}} \left(\langle \mathbf{a}(t), \mathbf{e}' \rangle + \varepsilon_1 - \langle \mathbf{a}(t'), \mathbf{e}' \rangle + (t' - t)(e_2 - e_1) \right),$$

$$\leq \Phi_{\mathbf{e}} \varepsilon_1 + \Phi_{\mathbf{e}} \cdot (e_2 - e_1 - (e'_2 - e'_1))(t' - t),$$

where ε_1 : *sub-optimality* of the learned classifier w.r.t. the 0-1 loss

 $\langle \boldsymbol{a}(t), \boldsymbol{e} \rangle \leq \varepsilon_1 + \min_{\boldsymbol{e}' \in \mathcal{E}(\mathcal{H})} \langle \boldsymbol{a}(t), \boldsymbol{e}' \rangle$

 $\rightarrow e' = (e'_1, e'_2)$ is unknown \rightarrow bound it such that F(e') > F(e).

CONE: a Bound Driven Search Algorithm

Proposition. Let *e* be the error profile obtained with a classifier trained with the parameter t, F(e)its associated F-measure value, Φ_e as defined in Eq. (1), and $\varepsilon_1 > 0$ the sub-optimality of our linear classifier.

Then for all t' < t:

A Geometric Interpretation

F

Our bound on F(e') can been seen the unreachable region of F-measure in the (t, F)-space.

$$F(\boldsymbol{e}') \leq F(\boldsymbol{e}) + \Phi_{\boldsymbol{e}}\varepsilon_1 + \Phi_{\boldsymbol{e}} \cdot (e_2 - e_1 - M_{max})(t' - t),$$

where
$$M_{max} = \max_{\substack{e'' \in \mathcal{E}(\mathcal{H}) \\ s.t. \ F(e'') > F(e)}} (e_2'' - e_1'')$$

and, for all t' > t:

 $F(e') \leq F(e) + \Phi_e \varepsilon_1 + \Phi_e \cdot (e_2 - e_1 - M_{min})(t' - t),$

where $M_{min} = \min_{e'' \in \mathcal{E}(\mathcal{H})} (e_2'' - e_1'').$ s.t. $F(e^{\prime\prime}) > F(e)$

Practical Evaluation of Theoretical Guarantees

both with SVM classifier (C = 1).

Perspectives

- Extend our study to more complex class of hypotheses (non linear hypotheses such as neural networks).
- Prove the convergence of our algorithm.
- Work on the notion of suboptimality to improve the bound.
- Work on a generalization bound on

On Abalone12, in function of the number of **CONE** steps and [1] grid size: *left:* on train set, evolution of the F-Measure and of the considered bound *right:* on test set, evolution of the F-Measure

compared to [1,2,3].

Parambath et al. [1].

Parambath et al. [1].

• A more informative bound on

• A faster convergence than

• Better results in average with

a small number of iterations

the optimal F-measure than

the F-measure.

30.9 (1.2) 32.4 (1.3) 23.4 (4.3) 20.4 (5.3) 53.3 (0.4) 61.6 (0.6)	0.0 (0.0) 30.9 (1.2) 32.4 (1.3) 32.2 (0.8) 31 0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 30 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 62	.8 (1.9) 30.8 (2	2.2) 30.7 (1.9) .1) 28.6 (1.9) 0.5) 56.5 (0.3)	66.5 (0.1) 30.7 (1.9) 28.6 (1.9) 56.5 (0.3) 17.0 (3.3)	66.6 (0.1) 31.6 (0.6) 21.4 (4.6) 59.2 (0.3) 17.7 (3.7)
23.4 (4.3) 20.4 (5.3) 53.3 (0.4) 61.6 (0.6)	0.0 (0.0) 23.4 (4.3) 20.4 (5.3) 20.6 (5.6) 30 44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 62	.9 (2.0) 21.2 (11 .6 (0.4) 59.4 (0	.1) 28.6 (1.9) 0.5) 56.5 (0.3)	28.6 (1.9) 56.5 (0.3)	21.4 (4.6) 59.2 (0.3)
53.3 (0.4) 61.6 (0.6)	44.5 (0.4) 53.3 (0.4) 61.6 (0.6) 61.6 (0.6) 62.	.6 (0.4) .59.4 (0	0.5) 56.5 (0.3)	56.5 (0.3)	59.2 (0.3)
		· · · ·	, , ,	· · · · · ·	, , ,
16.8 (27) 16.8 (42)	0.0 (0.0) 16.8 (2.7) 16.8 (4.2) 18.3 (3.3) 16	.3 (3.0) 15.5 (3	3.1) 17.0 (3.3)	17.0 (3.3)	17.7 (3.7)
			, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·
39.6 (4.7) 66.4 (3.2)	48.1 (5.8) 39.6 (4.7) 66.4 (3.2) 62.8 (3.9) 67.	.6 (4.0) 59.2 (8	3.1) 55.9 (6.4)	55.9 (6.4)	55.7 (5.7)
29.4 (2.9) 38.6 (7.1)	0.0 (0.0) 29.4 (2.9) 38.6 (7.1) 39.0 (7.5) 35.	.4 (15.6) 37.4 (10	0.1) 39.9 (6.5)	27.6 (6.8)	27.6 (6.8)
15.6 (5.2) 20.0 (6.4)	0.0 (0.0) 15.6 (5.2) 20.0 (6.4) 22.7 (6.0) 19	.3 (7.9) 21.5 (3	25.2 (4.5)	25.2 (4.5)	18.3 (7.2)
312(20) $103(25)$	19.4 (0.8) 34.2 (2.8) 40.3 (3.5) 40.5 (3.5) 41	.3 (4.4) 38.9 (5	5.2) 40.0 (3.1)	38.5 (3.2)	37.3 (3.6)
	19.4 (0.8) 3	4.2 (2.8) 40.3 (3.5) 40.5 (3.5) 41	4.2 (2.8) 40.3 (3.5) 40.5 (3.5) 41.3 (4.4) 38.9 (5)	4.2 (2.8) 40.3 (3.5) 40.5 (3.5) 41.3 (4.4) 38.9 (5.2) 40.0 (3.1)	

References

- [1] S. P. Parambath, N. Usunier, and Y. Grandvalet, *Optimizing F-Measures by Cost-Sensitive Classification*, NIPS 2014.
- [2] H. Narasimhan, H. Ramaswamy, A. Saha, and S. Agarwal, Consistent Multiclass Algorithms for Complex Performance Measures, ICML 2015.
- [3] O. Koyejo, N. Natarajan, P. Ravikumar, and I. . Dhillon, Consistent Binary Classification with Generalized Performance Metrics, NIPS 2014.