A Corrected Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data

R. Viola, R. Emonet, A. Habrard, G. Metzler, S. Riou, M. Sebban

July 4, 2019

Context

Fraud detection for the French Ministry of Economy and Finance (DGFiP).

Context

Fraud detection for the French Ministry of Economy and Finance (DGFiP).

Imbalanced datasets

A fraud rate between 0.05% to 30%.

Context

Fraud detection for the French Ministry of Economy and Finance (DGFiP).

Imbalanced datasets

A fraud rate between 0.05% to 30%.

Nearest neighbors

The nearest neighbor algorithm is used by the DGFiP for decision support.

∃ > 4

Observations

Limits

The small number of positives leads to little areas of positive prediction.

Limits

The small number of positives leads to little areas of positive prediction.

Needs

Reduce the number of undetected fraudsters without increasing the number of false alarms too much.

Observations

Limits

The small number of positives leads to little areas of positive prediction.

Needs

Reduce the number of undetected fraudsters without increasing the number of false alarms too much.

Ideas

Increase the area of influence of the positives.

Observations

Limits

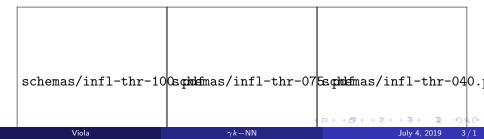
The small number of positives leads to little areas of positive prediction.

Needs

Reduce the number of undetected fraudsters without increasing the number of false alarms too much.

Ideas

Increase the area of influence of the positives.



Proposed method

$\gamma k - NN$

Scale the distance between a query point and positive training examples by a factor.

$$d_{\gamma}(\mathbf{x},\mathbf{x}_i) = egin{cases} d(\mathbf{x},\mathbf{x}_i) & ext{if } \mathbf{x}_i \in S_-, \ \gamma \cdot d(\mathbf{x},\mathbf{x}_i) & ext{if } \mathbf{x}_i \in S_+. \end{cases}$$

Algorithm: Classification of a new example

Input : a query **x** to be classified, a set of labeled samples $S = S_+ \cup S_-$, a number of neighbors k, a positive real value γ , a distance function d**Output:** the predicted label of **x**

 $\begin{array}{l} \mathcal{NN}^{-}, \mathcal{D}^{-} \leftarrow \textit{nn}(k, \textbf{x}, \mathcal{S}_{-}) \quad // \text{ nearest negative neighbors with their distances} \\ \mathcal{NN}^{+}, \mathcal{D}^{+} \leftarrow \textit{nn}(k, \textbf{x}, \mathcal{S}_{+}) \quad // \text{ nearest positive neighbors with their distances} \\ \mathcal{D}^{+} \leftarrow \gamma \cdot \mathcal{D}^{+} \\ \mathcal{NN}_{\gamma} \leftarrow \textit{firstK} \left(k, \textit{sortedMerge}((\mathcal{NN}^{-}, \mathcal{D}^{-}), (\mathcal{NN}^{+}, \mathcal{D}^{+}))\right) \\ y \leftarrow + \text{ if } \left|\mathcal{NN}_{\gamma} \cap \mathcal{NN}^{+}\right| \geq \frac{k}{2} \text{ else } - \quad // \text{ majority vote based on } \mathcal{NN}_{\gamma} \\ \textbf{return } y \end{array}$

Proposition on False Negative and False Positive probability

 $FN_{\gamma}(z)$ the probability for a positive example z to be a false negative using our algorithm. If $\gamma \leq 1$,

$\mathit{FN}_\gamma(\mathsf{z}) \leq \mathit{FN}(\mathsf{z})$

Proposition on False Negative and False Positive probability

 $FN_{\gamma}(z)$ the probability for a positive example z to be a false negative using our algorithm. If $\gamma \leq 1$,

$\mathit{FN}_\gamma(\mathsf{z}) \leq \mathit{FN}(\mathsf{z})$

Proposition on False Positive probability

 $FP_{\gamma}(z)$ the probability for a negative example z to be a false positive using our algorithm. If $\gamma \geq 1$,

$$FP_{\gamma}(\mathbf{z}) \leq FP(\mathbf{z})$$

Theoretical analysis(Ctd.)

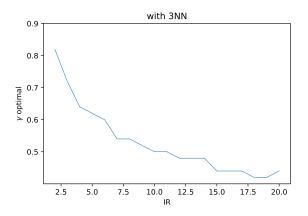


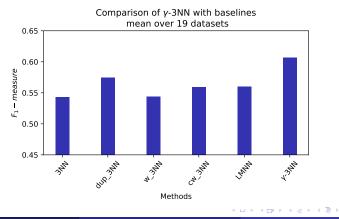
Figure: Evolution of the optimal γ value with respect to the IR for k = 3.

Experiments and results

- Comparison with 5 baselines.
- Tests on 19 public datasets and 11 private datasets.
- 10 CV of the value of γ and Mean of 5 experiments.

Experiments and results

- Comparison with 5 baselines.
- Tests on 19 public datasets and 11 private datasets.
- 10 CV of the value of γ and Mean of 5 experiments.

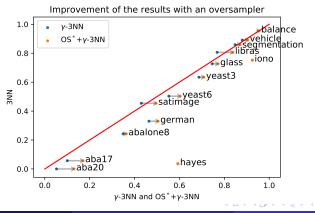


Experiments and results(Ctd.)

- As a complement to an oversampler.
- Selection of the best ratio between the actual one and 1.
- 2 separated values of γ (real and synthetic positives).

Experiments and results(Ctd.)

- As a complement to an oversampler.
- Selection of the best ratio between the actual one and 1.
- 2 separated values of γ (real and synthetic positives).



Viola

Table: Results for 3-NN on the DGFiP datasets.

DATASETS	3–NN	$\gamma k - NN$	SMOTE	$SMOTE + \gamma k - NN$
DGFIP19 2	$0,454_{(0,007)}$	$0,528 \scriptscriptstyle (0,005)$	$0,505 \scriptscriptstyle (0,010)$	0,529 (0,003)
Dgfip9 2	$0,\!173_{(0,074)}$	$\overline{0,\!396}_{(0,018)}$	$0,\!340 \scriptscriptstyle (0,033)$	0,419 (0,029)
Dgfip4 2	$0,164_{(0,155)}$	$\overline{0,373}_{(0,018)}$	$0,\!368 \scriptscriptstyle (0,057)$	0,377 (0,018)
Dgfip8 1	$0,100_{(0,045)}$	0,299 (0,010)	$0,\!278\scriptscriptstyle (0,043)$	0,299 (0,011)
Dgfip8 2	0,140(0,078)	$0,\!292_{(0,028)}$	0,313 (0,048)	$0,312 \scriptscriptstyle (0,021)$
Dgfip9 1	$0,088_{(0,090)}$	$0,\!258 \scriptscriptstyle (0,036)$	$0,\!270_{(0,079)}$	0,288 (0,026)
Dgfip4 1	$0,073_{(0,101)}$	$0,\!231_{\scriptscriptstyle (0,139)}$	$\overline{0,\!199}_{(0,129)}$	0,278 (0,067)
Dgfip16 1	$0,049_{(0,074)}$	$\overline{0,166}_{(0,065)}$	$0,\!180\scriptscriptstyle (0,061)$	0,191 (0,081)
Dgfip16 2	$0,210_{(0,102)}$	$0,202_{(0,056)}$	$\overline{0,\!220}_{(0,043)}$	0,229 (0,026)
Dgfip20 3	$0,142_{(0,015)}$	$0,210_{(0,019)}$	$\overline{0,199}_{(0,015)}$	0,212 (0,019)
Dgfip5 3	$0,030_{(0,012)}$	$\overline{0,105}_{(0,008)}$	$\bm{0,\!110}_{(0,109)}$	$0,107_{(0,010)}$
MEAN	$0,\!148_{(0,068)}$	$\underline{0,\!278}_{\scriptscriptstyle (0,037)}$	$0,\!271_{(0,057)}$	0,295 (0,028)

July 4, 2019

Lines of research

- Making our γ non stationary, i.e. having a γ which depends on the region in the feature space.
- Generalizing our algorithm using a Metric Learning approach.
- Derive generalization guarantees.

Questions ?

メロト メポト メヨト メヨト