
Landmark-based Ensemble Learning with
Random Fourier Features and Gradient Boosting

Léo Gautheron1[�], Pascal Germain2, Amaury Habrard1, Guillaume Metzler1,
Emilie Morvant1, Marc Sebban1, and Valentina Zantedeschi3

1 Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien UMR 5516, F-42023, Saint-Etienne, France
firstname.name@univ-st-etienne.fr leo g autheron@hotmail.fr

2 Département d’informatique et de génie logiciel, Université Laval, Québec, Canada
pascal.germain@ift.ulaval.ca

3 GE - Global Research, 1 Research Circle, Niskayuna, NY 12309
vzantedeschi@gmail.com

Abstract. This paper jointly leverages two state-of-the-art learning stra-
tegies—gradient boosting (GB) and kernel Random Fourier Features
(RFF)—to address the problem of kernel learning. Our study builds on
a recent result showing that one can learn a distribution over the RFF
to produce a new kernel suited for the task at hand. For learning this
distribution, we exploit a GB scheme expressed as ensembles of RFF
weak learners, each of them being a kernel function designed to fit the
residual. Unlike Multiple Kernel Learning techniques that make use of
a pre-computed dictionary of kernel functions to select from, at each
iteration we fit a kernel by approximating it from the training data as a
weighted sum of RFF. This strategy allows one to build a classifier based
on a small ensemble of learned kernel “landmarks” better suited for the
underlying application. We conduct a thorough experimental analysis to
highlight the advantages of our method compared to both boosting-based
and kernel-learning state-of-the-art methods.

Keywords: Gradient boosting · Random Fourier features ·Kernel learning

1 Introduction

Kernel methods are among the most popular approaches in machine learning
due to their capability to address non-linear problems, their robustness and their
simplicity. However, they exhibit two main flaws in terms of memory usage and
time complexity. Landmark-based kernel approaches [2] can be used to drastically
reduce the number of instances involved in the comparisons, but they heavily
depend on the choice and the parameterization of the kernel. Multiple Kernel
Learning [13] and Matching Pursuit methods [12] can provide alternative solutions
to this problem but these require the use of a pre-defined dictionary of base
functions. Another strategy to improve the scalability of kernel methods is to use
approximation techniques such as the Nyström [3] or Random Fourier Features



2 L. Gautheron et al.

(RFF) [10]. The latter is probably the most used thanks to its simplicity and ease
of computation. It allows the approximation of any shift-invariant kernel based on
the Fourier transform of the kernel. Several works have extended this technique by
allowing one to adapt the RFF approximation directly from the training data [1,
6, 11]. Among them, the recent work of Letarte et al. [6] introduces a method to
obtain a weighting distribution over the random features by a single pass over
them. This strategy is derived from a statistical learning analysis, starting from
the observation that each random feature can be interpreted as a weak hypothesis
in the form of trigonometric functions obtained by the Fourier decomposition.
However, in practice, this method requires the use of a fixed set of landmarks
selected beforehand and independently from the task before being able to learn
the representation in a second step. This leads to three important limitations:
(i) the need for a heuristic strategy for selecting relevant landmarks, (ii) these
latter and the associated representation might not be adapted for the underlying
task, and (iii) the number of landmarks might not be minimal w.r.t. that task,
inducing higher computational and memory costs.

We propose in this paper to tackle these issues with a gradient boosting
approach [4]. Our aim is to learn iteratively the classifier and a compact and
efficient representation at the same time. Our greedy optimization method is
similar to Oglic & Gärtner’s one [8], which at each iteration of the functional
gradient descent [7] refines the representation by adding the base function min-
imizing a residual-based loss function. But unlike our approach, their method
does not allow to learn a classifier at the same time. Instead, we propose to
jointly optimize the classifier and the base functions in the form of kernels by
leveraging both gradient boosting and RFF. Interestingly, we further show that
we can benefit from a significant performance boost by (i) considering each weak
learner as a single trigonometric feature, and (ii) learning the random part of
the RFF.
Organization of the paper. Section 2 describes the notations and the necessary
background knowledge. We present our method in Section 3 as well as two efficient
refinements before presenting an extensive experimental study in Section 4,
comparing our strategy with boosting-based and kernel learning methods.

2 Notations and Related Work

We consider binary classification tasks from a d-dimensional input space Rd
to a label set Y={−1,+1}. Let S=

{
(xi, yi)

}n
i=1

be a training set of n points.
We focus on kernel-based algorithms that rely on pre-defined kernel functions
k : Rd×Rd→R assessing the similarity between any two points of the input space.
These methods present a good performance when the parameters of the kernels
are learned and the chosen kernels are able to fit the distribution of the data.
However, selecting the right kernel and tuning its parameters is computationally
expensive, in general. To reduce this overhead, one can resort to Multiple Kernel
Learning techniques [13] which boil down to selecting the combination of kernels
that fits the best the training data: a dictionary of T base functions {kt}Tt=1



Learning Landmark-based Ensembles with RFF & Gradient Boosting 3

is composed of various kernels associated with some fixed parameters, and a
combination is learned, defined as

H(x,x′) =

T∑
t=1

αt kt(x,x′), (1)

with αt∈R the weight of the kernel kt(x,x′). As shown in Section 3, our main
contribution is to address this issue of optimizing a linear combination of kernels
by leveraging RFF and gradient boosting (we recall basics on it in Section 3.1).
To avoid the dictionary of kernel functions in Equation (1) from being pre-
computed, we propose a method inspired from Letarte et al. [6] to learn a
set of approximations of kernels tailored to the underlying classification task.
Unlike Letarte et al., we learn such functions so that the representation and the
classifier are jointly optimized. We consider landmark-based shift-invariant kernels
relying on the value δ=xt−x ∈ Rd and usually denoted by abuse of notation by
k(δ) = k(xt−x) = k(xt,x), where xt ∈Rd is a point—called landmark—lying
on the input space which all the instances are compared to, and that strongly
characterizes the kernel. At each iteration of our gradient boosting procedure,
we optimize the kernel function itself, exploiting the flexibility of the framework
of Letarte et al., where a kernel is a weighted sum of RFF [10] defined as

kqt(x
t − x) =

K∑
j=1

qtj cos
(
ωj · (xt − x)

)
, (2)

where the ωj are drawn from the Fourier transform of a shift-invariant kernel k
denoted by p(ω) and defined as

p(ω) =
1

(2π)d

∫
Rd

k(δ)e−iω·δdδ. (3)

When qt is uniform, we retrieve the setting of RFF and we have k(δ)'kqt(δ)
where larger number of random features K give better approximations [10].
Letarte et al. [6] aim to learn the weights of the random Fourier features qt. To
do so, they consider a loss function ` that measures the quality of the similarities
computed using the kernel kqt . Their theoretical study on ` leads to a closed-form
solution for qt computed as

∀j ∈ {1, . . . ,K}, qtj =
1

Zt
exp

(−β√n
n

n∑
i=1

`(htωj (xi))
)
, (4)

with β≥0 a parameter to tune, htω(x)=cos (ω ·(xt−x)), and Zt a normalization

constant such that
∑K
j=1 q

t
j=1. They learn a representation of the input space of

nL features where each of them is computed using kqt with the landmark (xt, yt)
selected randomly from the training set. Once the new representation is computed,
a (linear) predictor is learned from it, in a second step.



4 L. Gautheron et al.

Algorithm 1: Gradient boosting [4]

Inputs :Training set S =
{

(xi, yi)
}n
i=1

; Loss `; Number of iterations T

Output : sign
(
H0(x) +

∑T
t=1 α

that(x)
)

1: ∀i = 1, . . . , n, H0(xi) = argminρ
∑n
i=1 `(yi, ρ)

2: for t = 1, . . . , T do

3: ∀i = 1, . . . , n, ỹi = −
∂`
(
yi, H

t−1(xi)
)

∂Ht−1(xi)

4: at = argmina
∑n
i=1

(
ỹi − ha(xi)

)2
5: αt = argminα

∑n
i=1 `

(
yi, H

t−1(xi) + αhat(xi)
)

6: ∀i = 1, . . . , n, Ht(xi) = Ht−1(xi) + αthat(xi)
7: end for

It is worth noticing that this kind of procedure exhibits two limitations. First,
the model can be optimized only after having learned the representation. Second,
the landmarks have to be fixed before learning the representation. Thus, the
constructed representation is not guaranteed to be compact and relevant for the
learning algorithm considered. To tackle these issues, we propose in the following
a strategy that performs both steps at the same time through a gradient boosting
process that allows to jointly learn the set of landmarks and the final predictor.

3 Gradient Boosting Random Fourier Features

The approach we propose follows the widely used gradient boosting framework
first introduced by Friedman [4]. We briefly recall it below.

3.1 Gradient Boosting in a Nutshell

Gradient boosting is an ensemble method that aims at learning a weighted
majority vote over an ensemble of T weak predictors in a greedy way by learning
one classifier per iteration. The final majority vote is of the form

∀x ∈ Rd, sign

(
H0(x) +

T∑
t=1

αthat(x)

)
,

where H0 is an initial classifier fixed before the iterative process (usually set
such that it returns the same value for every sample), and αt is the weight
associated to the predictor hat and is learned at the same time as the parameters
at of that classifier. Given a differentiable loss `, the objective of the gradient
boosting algorithm is to perform a gradient descent where the variable to be
optimized is the ensemble and the function to be minimized is the empirical
loss. The pseudo-code of gradient boosting is reported in Algorithm 1. First, the
ensemble is constituted by only one predictor: the one that outputs a constant
value minimizing the loss over the whole training set (line 1). Then at each



Learning Landmark-based Ensembles with RFF & Gradient Boosting 5

Algorithm 2: GBRFF1

Inputs :Training set S =
{

(xi, yi)
}n
i=1

; Number of iterations T ;
K number of random features; Parameters γ and β

Output : sign
(
H0(x) +

∑T
t=1 α

t∑K
j=1 q

t
j cos

(
ωtj · (xt − x)

))
1: H0 ← H0(xi) = 1

2
ln

1+
1
n

∑n
j=1 yj

1− 1
n

∑n
j=1 yj

2: for t = 1, . . . , T do
3: ∀i = 1, . . . , n, wi = exp(−yiHt−1(xi))
4: ∀i = 1, . . . , n, ỹi = yiwi
5: ∀j = 1, . . . ,K, draw ωtj ∼ N (0, 2γ)d

6: xt = argmin
x∈Rd

1

n

∑n
i=1 exp

(
− ỹi 1

K

∑K
j=1 cos(ωtj · (x− xi))

)
7: ∀j = 1, . . . ,K, qtj = 1

Zt exp

(
−β
√
n

n

∑n
i=1 exp

(
− ỹi cos

(
ωtj · (xt − xi)

)))

8: αt = 1
2

ln

∑n
i=1

(
1+yi

∑K
j=1 q

t
j cos

(
ωt

j ·(x
t−xi)

))
wi

∑n
i=1

(
1−yi

∑K
j=1 q

t
j cos

(
ωt

j ·(x
t−xi)

))
wi

9: ∀i = 1, . . . , n, Ht(xi) = Ht−1(xi) + αt
∑K
j=1 q

t
j cos

(
ωtj · (xt − xi)

)
10: end for

iteration, the algorithm computes for each training example the negative gradient
of the loss (line 3), also called the residual and denoted by ỹi. The next step
consists in optimizing the parameters of the predictor hat that fits the best the
residuals (line 4), before learning the optimal step size αt that minimizes the loss
by adding hat , weighted by αt, to the current vote (line 5). Finally, the model is
updated by adding αthat(·) (line 6) to the vote.

3.2 Gradient Boosting with Random Fourier Features

Our main contribution takes the form of a learning algorithm which jointly
optimizes a compact representation of the data and the model. Our method,
called GBRFF1, leverages both Gradient Boosting and RFF. We describe its
pseudo-code in Algorithm 2 which follows the steps of Algorithm 1. The loss
function ` at the core of our algorithm is the exponential loss:

`
(
HT
)

=
1

n

n∑
i=1

exp
(
− yiHT (xi)

)
. (5)

Given `
(
HT
)
, line 1 of Algorithm 1 amounts to setting the initial learner as

∀i ∈ {1, . . . , n}, H0(xi) =
1

2
ln

1 + 1
n

∑n
j=1 yj

1− 1
n

∑n
j=1 yj

. (6)



6 L. Gautheron et al.

The residuals of line 3 are defined as ỹi = −∂`
(
yi, H

t−1(xi)
)

∂Ht−1(xi)
= yi e−yiH

t−1(xi).

Line 4 of Algorithm 1 tends to learn a weak learner that outputs exactly the
residuals’ values by minimizing the squared loss; but, this is not well suited
in our setting with the exponential loss (Equation (5)). To benefit from the
exponential decrease of the loss, we are rather interested in weak learners that
output predictions having a large absolute value and being of the same sign as the
residuals. Thus, we aim at favoring parameter values minimizing the exponential
loss between the residuals and the predictions of the weak learner as follows:

at = argmin
a

1

n

n∑
i=1

exp
(
− ỹiha(xi)

)
. (7)

Following the RFF principle, we can now define our weak learner as

hat(xi) =

K∑
j=1

qtj cos
(
ωtj · (xt − xi)

)
, (8)

where its parameters are given by at=({ωtj}Kj=1,x
t, qt). Instead of using a pre-

defined set of landmarks [6], we build this set iteratively, i.e., we learn one
landmark per iteration. To benefit from the closed form of Equation (4), we
propose the following greedy approach to learn the parameters at. At each
iteration t, we draw K vectors {ωtj}Kj=1∼pK with p the Fourier transform of a
given kernel (as defined in Equation (3)); then we look for the optimal landmark
xt. Plugging Equation (8) into Equation (7) and assuming a uniform prior
distribution over the random features, xt is learned to minimize

xt = argmin
x∈Rd

f(x) =
1

n

n∑
i=1

exp
(
− ỹi

1

K

K∑
j=1

cos(ωtj · (x− xi))
)
. (9)

Even if this problem is non-convex due to the cosine function, we can still compute
its derivative and perform a gradient descent to find a possible solution. The
partial derivative of Equation (9) with respect to x is given by

∂f

∂x
(x)=

1

Kn

n∑
i=1

ỹi
K

K∑
j=1

sin(ωtj · (x−xi))

 exp

− ỹi
K

K∑
j=1

cos(ωtj · (x−xi))

 K∑
j=1

ωtj .

According to Letarte et al. [6], given the landmark xt found by gradient descent,
we can now compute the weights of the random features qt as

∀j ∈ {1, . . . ,K}, qtj=
1

Zt
exp

[
−β√n
n

n∑
i=1

exp
(
− ỹi cos

(
ωtj · (xt−xi)

))]
, (10)

with β ≥ 0 a parameter to tune and Zt the normalization constant.



Learning Landmark-based Ensembles with RFF & Gradient Boosting 7

The last step concerns the step size αt. It is computed so as to minimize the
combination of the current model Ht−1 with the weak learner ht, i.e.,

αt = argmin
α

n∑
i=1

exp
[
−yi(Ht−1(xi)+αh

t(xi))
]

= argmin
α

n∑
i=1

wi exp
[
−yiαht(xi)

]
,

where wi= exp(−yiHt−1(xi)). In order to have a closed-form solution of α, we use
the convexity of the above quantity and the fact that ht(xi)∈ [−1, 1] to bound
the loss function to optimize. Indeed, we get

n∑
i=1

wie
−yiαht(xi) ≤

n∑
i=1

[
1−yiht(xi)

2

]
wie

α+

n∑
i=1

[
1+yih

t(xi)

2

]
wie
−α.

This upper bound is strictly convex. Its minimum αt can be found by setting to
0 the derivative w.r.t. α of the right-hand side of the previous equation. We get

n∑
i=1

(
1− yiht(xi)

2

)
wi eα =

n∑
i=1

(
1 + yih

t(xi)

2

)
wi e−α,

for which the solution is given by αt =
1

2
ln

(∑n
i=1(1− yiht(xi))wi∑n
i=1(1 + yiht(xi))wi

)
.

The same derivation can be used to find the initial predictor H0.
As usually done in the RFF literature [1, 10, 11] we use the RBF kernel

kγ(x,x′)=e−γ‖x−x
′‖2 with as Fourier transform vectors of d numbers each drawn

from the normal law with zero mean and variance 2γ that we denote N (0, 2γ)d.

3.3 Refining GBRFF1

In GBRFF1, the number of random features K used at each iteration has a
direct impact on the computation time of the algorithm. Moreover ωt is drawn
according to the Fourier transform of the RBF kernel and thus is not learned.
The second part of our contribution is to propose two refinements. First, we bring
to light the fact that one can drastically reduce the complexity of GBRFF1 by
learning a rough approximation of the kernel, yet much simpler and still very
effective, using K=1. In this scenario, we show that learning the landmarks boils
down to finding a single real number in [−π, π]. Then, to speed up the convergence
of the algorithm, we suggest to optimize ωt after a random initialization from
the Fourier transform. We show that a simple gradient descent with respect to
this parameter allows a faster convergence with better performance. These two
improvements lead to a variant of our original algorithm, called GBRFF2 and
presented in Algorithm 3.

Cheaper landmark learning using the periodicity of the cosine. As we
set K=1, the weak learner hat(x) is now simply defined as

hat(x) = cos
(
ωt · (xt − xi)

)
,



8 L. Gautheron et al.

Algorithm 3: GBRFF2

Inputs :Training set S =
{

(xi, yi)
}n
i=1

; Number of iterations T ;
Parameters γ and λ

Output : sign
(
H0(x) +

∑T
t=1 α

t cos
(
ωt · xi − bt

))
1: H0 ← H0(xi) = 1

2
ln

∑n
j=1

(
1+yj

)
∑n

j=1

(
1−yj

)
2: for t = 1, . . . , T do
3: ∀i = 1, . . . , n, wi = exp(−yiHt−1(xi))
4: ∀i = 1, . . . , n, ỹi = yiwi
5: Draw ω ∼ N (0, 2γ)d

6: bt = argmin
b∈[−π,π]

1
n

∑n
i=1 exp

(
− ỹi cos

(
ω · xi − b)

))
7: ωt = argmin

ω∈Rd

λ‖ω‖22 + 1
n

∑n
i=1 exp

(
− ỹi cos

(
ω · xi − bt)

))
.

8: αt = 1
2

ln

∑n
i=1

(
1+yi cos

(
ωt·xi−bt

))
wi

∑n
i=1

(
1−yi cos

(
ωt·xi−bt

))
wi

9: ∀i = 1, . . . , n, Ht(xi) = Ht−1(xi) + αt cos
(
ωt · xi − bt

)
10: end for

where its parameters are given by at = (ωt,xt). This formulation allows us to
eliminate the dependence on the hyper-parameter K. Moreover, one can also
get rid of β, because learning the weights qtj (line 7 of Algorithm 2) is no more
necessary. Instead, since K=1, we can see αt learned at each iteration as a
surrogate of these weights. As our weak learner is based on a single random
feature, the objective function (line 6) to learn the landmark at iteration t
becomes

xt = argmin
x∈Rd

fωt(x) =
1

n

n∑
i=1

exp
(
− ỹi cos(ωt · (x− xi))

)
.

Let c ∈ J1, dK be the index of the c-th coordinate of the landmark xt. We can
rewrite the objective function as

fωt(xt) =
1

n

n∑
i=1

e−ỹi cos(ω
t·xt−ωt·xi) =

1

n

n∑
i=1

e−ỹi cos(ω
t
cx

t
c+

∑
j 6=c ω

t
jx

t
j−ω

t·xi).

We leverage the periodicity of the cosine function along each direction to find the
optimal c-th coordinate of the landmark xtc∈ [−πωt

c
, πωt

c
] that minimizes fωt(xt) by

fixing all the other coordinates. Figure 1 illustrates this phenomenon on the two-
moons dataset when applying GBRFF1 with K=1. The plots in the first row
show the periodicity of the loss represented as repeating diagonal green/yellow
stripes (light yellow is associated to the smallest loss). There is an infinite number
of landmarks giving such a minimal loss at the middle of the yellow stripes. Thus,
by setting one coordinate of the landmark to an arbitrary value, the algorithm



Learning Landmark-based Ensembles with RFF & Gradient Boosting 9

is still able at any iteration to find along the second coordinate a value that
minimizes the loss (the resulting landmark at the current iteration is depicted
by a white cross). The second row shows that such a strategy allows us to get
an accuracy of 100% on this toy dataset after 10 iterations. By generalizing this,
instead of learning a landmark vector xt∈Rd, we fix all but one coordinate of
the landmark to 0, and then learn a single scalar bt∈ [−π, π] that minimizes

fωt(bt) =
1

n

n∑
i=1

exp
(
−ỹi cos

(
ωt · xi − bt

))
.

Learning ωt for faster convergence. The second refinement concerns the
randomness of the RFF due to vector ωt. So far, the latter was drawn according
p and then used to learn bt. We suggest instead to fine-tune ωt by doing a
gradient descent with as initialization the vector drawn from p. Supported by the
experiments performed in the following, we claim that such a strategy allows us
to both speed up the convergence of the algorithm and boost the accuracy. This
update requires to add a line of code, just after line 6 of Algorithm 2, expressed
as a regularized optimization problem:

ωt = argmin
ω∈Rd

λ‖ω‖22 +
1

n

n∑
i=1

exp
(
− ỹi cos

(
ω · xi − bt)

))
,

its derivative being
∂fω
∂ω

(ω) = 2λω +
1

n

n∑
i=1

xiỹi sin(ω·xi−bt) e−ỹi cos(ω·xi−bt).

4 Experimental Evaluation

The objective of this section is three-fold: first, we aim to bring to light the
interest of learning the landmarks rather than fixing them as done in Letarte et
al. [6]; second we study the impact of the number K of random features; lastly,
we perform an extensive experimental comparison of our algorithms. The Python
code of all experiments and the data used are publicly available4.

4.1 Setting

For GBRFF1 and GBRFF2, we select by cross-validation (CV) the hyper-

parameter γ ∈ 2{−2,...,2}

d . For GBRFF2, we also tune λ ∈ {0, 2{−5,...,−2}}. We
compare our two methods with the following algorithms.
• LGBM [5] is a state-of-the-art gradient boosting method using trees as base
predictors. We select by CV the maximum tree depth in {1, . . . , 10} and the L2
regularization parameter λ∈{0, 2{−5,...,−2}}.
• BMKR [13] is a Multiple Kernel Learning method based on gradient boosting

4 The code is available here: https://leogautheron.github.io



10 L. Gautheron et al.

Fig. 1. GBRFF1 with K=1 on the two-moons dataset at different iterations. Top
row shows the periodicity of the loss (light yellow indicates the minimal loss). Bottom
row shows the resulting decision boundaries between the classes (blue & red) by fixing
arbitrarily one coordinate of the landmark and minimizing the loss along the other one.

Table 1. Description of the datasets (n: number of examples, d: number of features, c:
number of classes) and the classes chosen as negative (-1) and positive (+1).

Name n d c Label -1 Label +1 Name n d c Label -1 Label +1

wine 178 13 3 2, 3 1 australian 690 14 2 0 1
sonar 208 60 2 M R pima 768 8 2 0 1
newthyroid 215 5 3 1 2, 3 vehicule 846 18 4 van bus, opel, saab
heart 270 13 2 1 2 german 1000 23 2 1 2
bupa 345 6 2 2 1 splice 3175 60 2 +1 -1
iono 351 34 2 g b spambase 4597 57 2 0 1
wdbc 569 30 2 B M occupancy 20560 5 2 0 1
balance 625 4 3 B, R L bankmarketing 45211 51 2 no yes

with least square loss. It selects at each iteration the best kernel plugged inside an
SVR to fit the residuals among 10 RBF kernels with γ ∈ 2{−4,...,5} and the linear
kernel k(x,x′) = x>x′. We select by CV the SVR parameter C∈10{−2,...,2}.
• GFC [8] is a greedy feature construction method based on functional gradient
descent. It iteratively refines the representation learned by adding a feature that
matches the residual function defined for the least squared loss. We use the final
representation to learn a linear SVM where C∈10{−2,...,2} is selected by CV.
• PBRFF [6] that (1) draws with replacement nL landmarks from the training
set; (2) learns a representation of nL features where each feature is computed using
Equation (2) based on K=10 vectors drawn like our methods from N (0, 2γ)d; (3)
learns a linear SVM on the new representation. We select by CV its parameters

γ ∈ 2{−2,...,2}

d , β ∈ 10{−2,...,2} and the SVM parameter C ∈ 10{−2,...,2}.



Learning Landmark-based Ensembles with RFF & Gradient Boosting 11

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

PBRFF K=10
GBRFF1 K=10
GBRFF2

Fig. 2. Mean test accuracy over 20 train/test splits over the 16 datasets. We train the
three methods using from 1 to 50 landmarks.

We consider 16 datasets coming mainly from the UCI repository that we
binarized as described in Table 1. We generate for each dataset 20 random
70%/30% train/test splits. Datasets are pre-processed such that each feature
in the training set has 0 mean and unit variance; the factors computed on the
training set are then used to scale each feature in the test set. All parameters
are tuned by 5-fold CV on the training set by performing a grid search.

4.2 Influence of Learning the Landmarks

We present in Figure 2 the behavior of the three methods that make use of
landmarks and RFF, that is PBRFF, GBRFF1 and GBRFF2. With more
than 25 landmarks, PBRFF and GBRFF1 show similar mean accuracy and
reach about 87.5% after 50 iterations. However, for a small set of landmarks
(in particular smaller than 25) GBRFF1 is consistently superior by about 1
point higher than PBRFF, showing the interest of learning the landmarks. But
the certainly most striking result comes from the performance of our variant
GBRFF2 which outperforms the two competing methods. This is particularly
true for a small amount of landmarks. Notice that GBRFF2 is able to reach
its maximum with about 20 landmarks, while GBRFF1 and PBRFF require
more iterations without reaching the same performance. This definitely shows
the benefit of learning the random features compared to drawing them randomly.

4.3 Influence of the Number of Random Features

A key parameter of GBRFF1 is K, the number of random features used at each
iteration. To highlight its impact, we report in Figure 3 the mean test accuracy
of GBRFF1 with K∈{1, 5, 10, 20} across all datasets and over the 20 train/test
splits. To have a fair study, the comparison is performed according to the same
total number of random features after the whole boosting process, that is T×K
with T the number of iterations. First of all, we observe that with a total of 1, 000



12 L. Gautheron et al.

74.86

82.63

85.25 86.07 86.87 87.63

77.90

84.23
86.07 86.91 87.51 88.03

79.71

85.34
86.75 87.47 87.90 88.35

82.47

86.74 87.53 87.97 88.16 88.55

20 100 200 300 500 1000
Total number of random features used in the whole process (T ×K)

70

75

80

85

90
A

cc
ur

ac
y

GBRFF1 K=20 GBRFF1 K=10 GBRFF1 K=5 GBRFF1 K=1

Fig. 3. Mean results over the 16 datasets w.r.t. the same total number of random
features T×K for K∈{1, 5, 10, 20}, with T the number of boosting iterations.

random features, K does not have a big impact on the performance. However,
when decreasing the value of T ×K, it becomes much more interesting in terms of
accuracy to set K to a small value. This shows that the more we want a compact
final representation, the more we need to refine the random features: it is better
to weight each of the features greedily with αt (line 8 of Algorithm 3) rather
than using the closed-form solution of Equation (10) (line 7 of Algorithm 2) to
weight them all at once. Even if in the usual context of RFF it is desirable to
have a large K value to approximate a kernel, this series of experiments shows
that a simple rough approximation with K=1 along with a sufficient number of
iterations allows the final ensemble to mimic the approximation of a new kernel
suited for the task at hand.

4.4 Influence of the Number of Samples on the Computation Time

The specificities of GBRFF2 come from the number of random features K
set to 1 at each iteration and the learning of ωt. We have already shown in
Figure 2 that this allows us to get better results. We study in this section how
GBRFF2 scales compared to the other methods. To do so, we consider artificial
datasets with an increasing number of samples (generated with scikit-learn [9]
library’s make classification function). The initial size is set to 150 samples,
and we successively generate datasets with a size equal to the previous dataset
size multiplied by 1.5. Here, we do not split the datasets in train and test as we
are not interested in the accuracy. We report the time in seconds necessary to
train the models and to predict the labels on the whole datasets. The parameters
are fixed as follows: C = 1 for the methods using SVM or SVR; the tree depth
is set to 5 for LGBM; K = 10, γ = 1

d , and β = 1 for PBRFF and GBRFF1;
γ = 1

d and λ = 0 for GBRFF2. All the methods are run with 100 iterations
(or landmarks) and are not run on datasets requiring more than 1000 seconds
of execution time (because larger datasets requiring more than 1000 seconds by
the fastest method do not fit in the RAM memory of the computer used for the
experiments). We report the results in Figure 4.

We first recall that GBRFF2 learns at each iteration a random feature and
a landmark while GBRFF1 only learns the landmark and PBRFF draws them



Learning Landmark-based Ensembles with RFF & Gradient Boosting 13

1,702 3,829 8,614
19,381

43,606
98,113

220,753
496,693

1,117,558
2,514,505

5,657,635
12,729,678

28,641,775
64,443,993

Number of samples

0

200

400

600

800

1000
T

im
e

in
se

co
nd

s

BMKR GFC PBRFF GBRFF1 GBRFF2 LGBM

Fig. 4. Computation time in seconds required to train and test the six methods with
fixed parameters on an artificial dataset having an increasing number of samples. The
whole dataset is used for training and testing, and a method requiring more than 1000
seconds at a given step is not trained on the larger datasets.

randomly. Thus, GBRFF1 should present higher computation times compared
to PBRFF. However, for datasets with a number of samples larger than 20, 000,
GBRFF1 becomes cheaper than PBRFF. This is due to the fact that the SVM
classifier learned by PBRFF does not scale as well as gradient boosting-based
methods. The two-step method GFC is in addition also slower than GBRFF1.
This shows the computational advantage of having a one-step procedure to learn
both the representation and the final classifier. When looking at the time limit
of 1000 seconds, both GBRFF1 and GBRFF2 are the fastest kernel-based
methods compared to BMKR, GFC and PBRFF. This shows the efficiency
of learning kernels in a greedy fashion. We also see that GBRFF2 performs
faster than GBRFF1 for any number of samples. At the limit of 1000 seconds,
it is able to deal with datasets that are 10 times larger than GBRFF1, due
to the lower complexity of the learned weak learner used in GBRFF2. Finally,
GBRFF2 is globally the second-fastest method behind the gradient boosting
method LGBM that uses trees as base classifiers.

4.5 Performance Comparison Between All Methods

Table 2 presents for each dataset the mean results over the 20 splits using 100
iterations/landmarks for each method. Due to the size of the dataset “bankmar-
keting”, we do not report the results of the algorithms that do not converge
in time for this dataset, and we compute the average ranks and mean results
over the other 15 datasets. In terms of accuracy, GBRFF2 shows very good
results compared with the state-of-the-art as it obtains the best average rank
among the six methods and on average the best mean accuracy leaving apart
“bankmarketing”. Interestingly, our method is the only kernel-based one that
scales well enough to be applied to this latter dataset.



14 L. Gautheron et al.

Table 2. Mean test accuracy ± standard deviation over 20 random train/test splits. A
‘-’ in the last row indicates that the algorithm did not converge in time on this dataset.
Average ranks and mean results are computed over the first 15 datasets.

Dataset BMKR GFC PBRFF GBRFF1 LGBM GBRFF2

wine 99.5 ± 1.0 99.3 ± 1.1 98.1 ± 2.1 98.3 ± 1.5 96.6 ± 3.2 98.5 ± 1.6
sonar 78.8 ± 7.2 76.6 ± 3.2 76.7 ± 5.2 81.8 ± 3.5 82.4 ± 4.3 83.0 ± 5.0
newthyroid 96.5 ± 1.7 96.5 ± 2.1 96.5 ± 1.5 95.3 ± 2.2 94.8 ± 2.9 96.9 ± 2.1
heart 85.6 ± 4.0 79.4 ± 4.5 85.4 ± 3.5 83.6 ± 4.0 83.0 ± 3.5 83.1 ± 4.0
bupa 68.1 ± 4.9 64.7 ± 3.2 69.0 ± 4.2 70.3 ± 4.9 72.0 ± 3.3 71.2 ± 4.5
iono 94.2 ± 1.4 91.5 ± 2.3 94.2 ± 1.8 88.2 ± 2.3 93.3 ± 2.5 89.2 ± 2.1
wdbc 96.1 ± 1.2 95.8 ± 1.3 96.5 ± 1.1 96.8 ± 1.1 95.8 ± 1.5 97.3 ± 1.2
balance 96.0 ± 1.2 95.1 ± 2.0 98.9 ± 1.1 97.7 ± 0.7 93.5 ± 2.6 97.7 ± 0.6
australian 85.9 ± 2.0 80.9 ± 2.4 84.6 ± 2.3 86.7 ± 1.7 85.5 ± 1.9 86.9 ± 1.9
pima 76.4 ± 2.0 68.7 ± 2.6 76.1 ± 2.5 76.5 ± 2.7 75.5 ± 2.7 77.1 ± 2.5
vehicle 96.6 ± 1.3 95.9 ± 0.8 96.5 ± 1.4 96.3 ± 1.2 96.7 ± 1.0 97.1 ± 1.0
german 72.3 ± 1.8 64.3 ± 2.8 72.4 ± 1.4 73.7 ± 1.6 73.5 ± 1.7 74.0 ± 1.3
splice 87.5 ± 1.0 87.0 ± 1.0 83.5 ± 0.7 83.9 ± 1.1 97.0 ± 0.5 92.4 ± 0.8
spambase 93.5 ± 0.4 91.3 ± 0.6 91.6 ± 0.7 90.7 ± 0.7 95.6 ± 0.4 92.8 ± 0.6
occupancy 99.3 ± 0.1 98.9 ± 0.7 98.9 ± 0.1 98.8 ± 0.1 99.3 ± 0.1 98.9 ± 0.1

Mean 88.4 ± 2.1 85.7 ± 2.0 87.9 ± 2.0 87.9 ± 2.0 89.0 ± 2.1 89.1 ± 2.0
Average Rank 2.88 4.94 3.75 3.81 3.44 2.19

bankmarketing - - - 89.7 ± 0.2 90.8 ± 0.2 90.0 ± 0.2

4.6 Comparison of LGBM and GBRFF2 on Toy Datasets

In this last experiment, we focus on LGBM and GBRFF2 which have been
shown to be the two best performing methods in terms of accuracy and execution
time. Even if BMKR is among the three best methods in terms of accuracy, we
do not consider it for this experiment due to its poor execution time. Learning a
classifier based on non-linear kernels through GBRFF2 has the advantage of
being able to capture non-linear decision surfaces, whereas LGBM is not well
suited for this because it uses trees as base learner. To illustrate this advantage,
we consider three synthetics 2D datasets with non-linearly separable classes. The
first one, called “swiss”, represents two spirals of two classes side by side. The
second one, namely “circles”, consists of four circles with the same center and
an increasing radius by alternating the class of each circle. The third dataset,
called “board”, consists of a four by four checkerboard with alternating classes
in each cell. Here, both LGBM and GBRFF2 are run for 1000 iterations to
ensure their convergence and parameters are tuned by CV as previously.

Figure 5 gives evidence that GBRFF2 is able to achieve better results than
LGBM using only a small amount of training examples, i.e., 500 or less. The
performances are asymptotically similar for both methods on the board and circle
datasets with a faster rate of convergence for GBRFF2. Furthermore, if we look
at the decision boundaries and their associated performances at train and test
time, we can see that LGBM is prone to overfit the training data compared
to our approach, showing a drastic drop in performance between learning and
testing. The learned decision boundaries are also smoother with GBRRF2 than
with LGBM. These experiments show the advantage of having a non-linear weak
learner in a gradient boosting approach.



Learning Landmark-based Ensembles with RFF & Gradient Boosting 15

Fig. 5. Comparison of LGBM and GBRFF2 on three synthetic datasets in terms of
classification accuracy and decision boundaries (upper part of the figure) and in terms
of performance w.r.t. the number of examples (last row of plots).

5 Conclusion and Perspectives

In this paper, we take advantages of two machine learning approaches, gradient
boosting and random Fourier features, to derive a novel algorithm that jointly
learns a compact representation and a model based on random features. Building
on a recent work [6], we learn a kernel by approximating it as a weighted sum of
RFF [10]. The originality is that we learn such kernels so that the representation
and the classifier are jointly optimized. We show that we can benefit from a
performance boost in terms of accuracy and computation time by considering



16 L. Gautheron et al.

each weak learner as a single trigonometric feature and learning the random part
of the RFF. The experimental study shows the competitiveness of our method
with state-of-the-art boosting and kernel learning methods.

The optimization of the random feature and of the landmark at each iteration
can be computationally expensive when the number of iterations is large. A
promising future line of research to speed-up the learning is to derive other kernel
approximations where these two parameters can be computed with a closed-form
solution. Other perspectives regarding the scalability include the use of standard
gradient boosting tricks [5] such as sampling or learning the kernels in parallel.

Acknowledgements. Work supported in part by French projects APRIORI ANR-

18-CE23-0015, LIVES ANR-15-CE23-0026 and IDEXLYON ACADEMICS ANR-16-IDEX-0005,
and in part by the Canada CIFAR AI Chair Program.

References

1. Agrawal, R., Campbell, T., Huggins, J., Broderick, T.: Data-dependent compression
of random features for large-scale kernel approximation. In: the 22nd International
Conference on Artificial Intelligence and Statistics. pp. 1822–1831 (2019)

2. Balcan, M., Blum, A., Srebro, N.: Improved guarantees for learning via similarity
functions. In: the 21st Annual Conference on Learning Theory. pp. 287–298 (2008)

3. Drineas, P., Mahoney, M.W.: On the Nyström method for approximating a gram
matrix for improved kernel-based learning. The Journal of Machine Learning
Research 6, 2153–2175 (2005)

4. Friedman, J.H.: Greedy function approximation: a gradient boosting machine.
Annals of statistics pp. 1189–1232 (2001)

5. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.:
Lightgbm: A highly efficient gradient boosting decision tree. In: Advances in neural
information processing systems. pp. 3146–3154 (2017)

6. Letarte, G., Morvant, E., Germain, P.: Pseudo-Bayesian learning with kernel Fourier
transform as prior. In: The 22nd International Conference on Artificial Intelligence
and Statistics. pp. 768–776 (2019)

7. Mason, L., Baxter, J., Bartlett, P.L., Frean, M.: Functional gradient techniques
for combining hypotheses. Advances in Neural Information Processing Systems pp.
221–246 (1999)

8. Oglic, D., Gärtner, T.: Greedy feature construction. In: Advances in neural infor-
mation processing systems. pp. 3945–3953 (2016)

9. Pedregosa, F., et al.: Scikit-learn: Machine learning in python. The Journal of
Machine Learning Research 12, 2825–2830 (2011)

10. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances
in neural information processing systems. pp. 1177–1184 (2008)

11. Sinha, A., Duchi, J.C.: Learning kernels with random features. In: Advances in
Neural Information Processing Systems. pp. 1298–1306 (2016)

12. Vincent, P., Bengio, Y.: Kernel matching pursuit. Machine learning 48(1-3), 165–187
(2002)

13. Wu, D., Wang, B., Precup, D., Boulet, B.: Boosting based multiple kernel learning
and transfer regression for electricity load forecasting. In: Joint European Conference
on Machine Learning and Knowledge Discovery in Databases. pp. 39–51. Springer
(2017)


