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Abstract
Learning from imbalanced data, where the positive
examples are very scarce, remains a challenging
task from both a theoretical and algorithmic per-
spective. In this paper, we address this problem
using a metric learning strategy. Unlike the state-
of-the-art methods, our algorithm MLFP, for Met-
ric Learning from Few Positives, learns a new rep-
resentation that is used only when a test query is
compared to a minority training example. From
a geometric perspective, it artificially brings pos-
itive examples closer to the query without chang-
ing the distances to the negative (majority class)
data. This strategy allows us to expand the decision
boundaries around the positives, yielding a better
F -Measure, a criterion which is suited to deal with
imbalanced scenarios. Beyond the algorithmic con-
tribution provided by MLFP, our paper presents
generalization guarantees on the false positive and
false negative rates. Extensive experiments con-
ducted on several imbalanced datasets show the ef-
fectiveness of our method.

1 Introduction
Fraud detection in bank or insurance applications [Abdal-
lah et al., 2016; Schiller, 2006], and anomaly identifica-
tion for medical diagnosis [Aggarwal, 2017] are some so-
cietal challenges requiring to address the problem of learn-
ing from highly imbalanced data. When dealing with such
a setting, one has to face two major issues: (i) the scarcity
of the class of interest, only composed of a few positive
data, which limits the efficiency of standard margin-based
loss functions; (ii) the scattering of positive examples in the
total mass of the training data, which makes the estimation
of local densities much more complicated than in balanced
scenarios. Several solutions have been proposed in the lit-
erature to address these two problems. Most of them con-
sist in applying sampling strategies which aim to balance the
dataset by reducing the number of negative examples and/or
creating new synthetic positive data [Sharma et al., 2018;
Pérez-Ortiz et al., 2019]. On the other hand, one can resort

to cost-sensitive algorithms [Khan et al., 2017] which assign
a weight to each class (or even to each example) so that the
classifier can focus better on the minority class. Other strate-
gies include the use of ensemble methods [Wu et al., 2017;
Frery et al., 2018] or the specific adaptation of existing ap-
proaches such as deep learning [Huang et al., 2016; Dumpala
et al., 2018] or kernel methods [Mathew et al., 2015; Ding et
al., 2018; Zhang et al., 2019].

In this paper, we address the problem of learning from im-
balanced data from a metric learning perspective [Bellet et
al., 2013; Kulis and others, 2013]. Learning a metric specifi-
cally designed for the application at hand may present several
advantages in the context of imbalanced datasets: (i) the met-
ric can be learned under semantic constraints allowing us to
expand the decision boundaries around the positives; (ii) this
framework enables to design optimization problems based on
the geometry of the data without suffering from the issues of
standard accuracy-based loss functions (e.g., hinge loss for
SVMs, exponential loss for boosting, logistic loss for logis-
tic regression); (iii) metric learning is a nice setting to derive
theoretical guarantees on the learned transformation [Bellet
et al., 2015]. Surprisingly, despite these interesting features,
metric learning has not received much attention to address the
problem of learning from imbalanced data (see, e.g., the re-
cent papers [Feng et al., 2018], [Wang et al., 2018] and [Gau-
theron et al., 2019]). The goal of this paper is to bridge this
gap from both an algorithmic and a theoretical perspective.
As illustrated in Figure 1, we propose the algorithm MLFP
that optimizes a linear transformation (via a Positive Semi
Definite (PSD) matrix M of a Mahalanobis distance) only
when a test query is compared to a minority training example.
A single metric M is learned for the whole space taking the
geometry of the data into account. Unlike the standard metric
learning algorithms (see, e.g., LMNN [Weinberger and Saul,
2009] or ITML [Davis et al., 2007]), our method boils down
to artificially bringing positive examples closer to the query
without challenging the features of the negatives. This has a
direct impact on the decision boundaries around the positives
allowing us to capture more examples of the class of interest
yielding a better F -Measure (see Section 3 for a formal defi-
nition). By using the uniform stability framework, we derive
theoretical guarantees on the learned matrix M showing the
actual capability of MLFP to control the false positive and
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Figure 1: Intuition behind our method MLFP: a PSD matrix M is
optimized under constraints, and is used only when a test query is
compared to a positive example. The distance to the negative exam-
ples is kept unchanged. This allows the learned metric to expand the
decision boundaries around the positives and thus to capture more
examples of the class of interest.

false negative rates.
The paper is organized as follows. In Section 2, we re-

port some related work on metric learning for imbalanced
data classification. Section 3 is dedicated to the presentation
of our metric learning algorithm MLFP. Section 4 presents
a theoretical analysis using the uniform stability framework
and Section 5 illustrates the performance of MLFP compared
to state-of-the-art algorithms.

2 Related Work
Most of the metric learning algorithms (see [Bellet et al.,
2013; Kulis and others, 2013] for a survey) are based on the
optimization of the Mahalanobis distance between two points
xi and xj ∈ Rq:

dM(xi,xj)
2 = (xi − xj)

TM(xi − xj),

where M is a q × q Positive Semi Definite matrix. One can
express M as LTL where L is a r × q matrix where r is the
rank of M. Thus, this distance can be seen as the Euclidean
distance in a new feature space Lx.

A well-known representative of this family of algorithms
is the Large Margin Nearest Neighbor (LMNN) [Weinberger
and Saul, 2009]. For each example of a training set of sizem,
the learned metric M aims to bring closer the neighbors of
the same class (called target neighbors) while pushing away
the examples of other classes (the impostors). This algorithm
has been shown to be very efficient and to scale well with
large datasets. However, it is worth noticing that LMNN is
not designed to take into account some imbalance in the data.
Indeed, the similarity constraints constructed from pairs
of examples of the same class do not make any difference
between the positive and negative examples. Therefore, in
imbalanced scenarios, LMNN, as the other state-of-the-art
methods, is prone to focus on the majority class and thus is
subject to miss the positive examples.

The first attempts to address the problem of learning a
metric from imbalanced datasets have been proposed very
recently. [Wang et al., 2018] introduce an iterative metric

learning algorithm (IML) that aims to define a stable neigh-
borhood used to predict the label of a new test data. The
method repeats two main steps: (i) the learning of a linear
transformation, e.g., by using LMNN, and (ii) a training sam-
ple selection given a test example. The procedure is repeated
until stabilization of the neighborhood. By repeating the pro-
cess several times, IML is able to locally separate positives
from negatives. However, the main issue comes from the al-
gorithmic complexity of the method, which requires to apply
LMNN and to update the pairs used for the training process
at each iteration. Another approach to learn metrics from im-
balanced datasets has been recently proposed [Gautheron et
al., 2019]. In their Imbalanced Metric Learning algorithm
(ImbML), the authors take into account the nature of the
pairwise constraints by using two different sub-losses, one
for each label, weighted according to the number of posi-
tive and negative examples respectively. This intuitive and
natural way to proceed prevents the algorithm from favoring
the majority class. However, we will see that applying the
learned metric M to all examples is not necessary, focusing
only on the minority class appears to be much more efficient
and allows us notably to better control the false negatives. Fi-
nally, [Feng et al., 2018] introduce DMBK for Distance Met-
ric by Balancing KL-divergence. This algorithm resorts to the
KL-divergence to represent normalized between-class diver-
gences. Combined with a geometric mean, DMBK is able
to make these divergences balanced. Note that this method
makes sense in the multi-class setting, but is meaningless for
addressing binary problems, due to the use of the normaliza-
tion while computing the KL-divergence.

Beyond the algorithmic limitations of the previous state-of-
the-art algorithms, note that none of them comes with guar-
antees on the classification error. In this paper, we address
this problem by studying the capability of MLFP to optimize
a metric M which provides a good compromise between (i)
expanding the decision boundaries around the positives which
enables to reduce the false negative rate at test time (one of
the main issues faced in imbalanced learning); (ii) controlling
this expansion to prevent the algorithm from detecting too
many false alarms, represented by the false positive rate. The
theoretical results take the form of guarantees on the learned
metric using the uniform stability framework [Bousquet and
Elisseeff, 2002] which measures the stability of the output
of the algorithm when the training set is subject to slight
changes.

3 Metric Learning for Imbalanced Data

In this section, we present our algorithm MLFP, for Metric
Learning from Few Positives. In the following, we denote by
S = {zi = (xi, yi)}mi=1 the set ofm training examples drawn
i.i.d. from an unknown joint distributionD overX×Y , where
xi ∈ X (here X = Rq) is a feature vector and yi ∈ Y (here
Y = {−1,+1}) corresponds to its associated label. The label
+1 is used to denote the positive or the minority class. We
further note S = S+ ∪ S− with S+ the set of m+ positive
examples and S− the set of m− negative examples, such that
m = m+ +m−.



3.1 Problem Formulation
In our approach, we use the Euclidean distance when compar-
ing a query point to a majority-class example. The originality
comes from the use of an optimized Mahalanobis distance
when comparing a query to a minority-class sample. The ob-
jective of this strategy is to formulate a metric learning prob-
lem leading to a classifier (a kNN here) which is accurate on
both classes even in an imbalanced scenario.

In order to avoid the pitfall of classic metric learning al-
gorithms that are prone to focus on the majority class, we
propose to give more importance to the minority class com-
posed of the positive instances. Our algorithm MLFP tries to
control the false positive (FP) and false negative (FN) rates
thanks to the following constrained optimization problem:

min
M∈S+

1

m3

(1− α)
∑

(xi,xj ,xk)
yi=yj=16=yk

`FN(M, zi, zj , zk)

+ α
∑

(xi,xj ,xk)
yi=yj=−16=yk

`FP(M, zi, zj , zk)

+ µ‖M− I‖2F ,

such that λmax(M) ≤ 1. (1)

where S+ is the set of PSD matrices, λmax(M) is the largest
eigenvalue of the PSD matrix M, `FN and `FP are defined by:

`FN(M, zi, zj , zk) = [1− c+ dM(xi,xj)
2 − d(xi,xk)2]+,

`FP(M, zi, zj , zk) = [1− c+ d(xi,xj)
2 − dM(xi,xk)

2]+,

where [a]+ = max(0, a), α is the positive rate
m+

m
and

µ‖M− I‖2F is a regularization term which penalizes a large
deviation from the Euclidean distance. The hyper-parameter
c controls the margin we want to preserve between pairs of
dissimilar examples according to the Euclidean space and the
learned one.

Problem (1) is composed of two terms where triplets are
involved. Unlike standard metric learning algorithms, our
method takes into account both the Euclidean distance d and
the metric learned dM . More precisely: the first term `FN
aims to gather the minority class examples with respect to
the learned metric such that the distance between two posi-
tives (using M) is less than the distance to a negative exam-
ple (using the Euclidean distance). This subloss can be seen
as a way to prevent the model from generating false negatives
(FN). The second term `FP works in a similar manner. The
only difference lies in the fact that the query xi is a negative
example. Thus, we learn M such that the positive queries xk
are not bringing too close to xi, i.e. the Euclidean distance be-
tween two negatives xi and xj (with respect to the Euclidean
distance) is lower than the distance between xi and xk (with
respect to M). This subloss can be seen as a way to prevent
the model from generating false positives (FP).

Both FN and FP are important terms to optimize measures
that are more suited to deal with imbalanced settings, such as

the F -Measure [Rijsbergen, 1979] defined as follows:

F1 =
2(m+ − FN)

2m+ − FN + FP
.

Minimizing the F -Measure boils down to finding a good
trade-off between FP and FN. However, in a highly imbal-
anced setting, where m+ is very low, missing only a few pos-
itives leads to a dramatic decrease of the F -Measure. That
is why we constrain the largest eigenvalue λmax(M) to be
lower than 1, so that the learned matrix M aims to pay more
attention to the positive class. In the next section, we provide
a formal explanation of its use.

3.2 On the Impact of the Constraint
We study the impact of the λmax(M) value on both FN and
FP and, thus the influence of the constraint of our optimiza-
tion problem.

Proposition 1. Let P[FNM(x)] (resp. P[FPM(x)]) be the
probability of a positive query (resp. a negative query) x
of being a false negative (resp. a false positive) using the
1-NN algorithm with the learned matrix M and P[FN(x)]
(resp. P[FP (x)]) the same probability using the Euclidean
distance.
Then, if λmax(M) ≤ 1, we have:

P[FNM(x)] ≤ P[FN(x)] and P[FPM(x)] ≥ P[FP (x)].

Sketch of proof. Let ε be the distance from x to its nearest
neighbor Nx. The example x is a false negative if Nx ∈
S−, that is, all positives x′ ∈ S+ are outside an ellipsoid
Eε,M−1(x), defined by ε and M. Therefore, we have:

P[FNM(x)] = (1− P
[
x′ ∈ Eε,M−1(x)

]
)m+ . (2)

When the Euclidean distance is used, we deal with a standard
sphere Sε of radius ε, and we get:

P[FN(x)] = (1− P [x′ ∈ Sε(x)])m+ . (3)

Having λmax(M) ≤ 1 implies Eq. (2) ≤ Eq. (3). In-
deed λmax(M) ≤ 1 implies that the sphere Sε is included
in the ellipsoid Eε,M−1 as illustrated in Figure 2. By this
choice, we expand the decision boundaries around positives
and thus capture more minority class examples. Using a simi-
lar scheme, we can prove the second inequality of Proposition
1. When x is negative and Nx ∈ S+, we have

P[FPM(x)] = (1− P
[
x′ ∈ Eε,M−1(x)

]
)m− , (4)

and

P[FP (x)] = (1− P [x′ ∈ Sε(x)])m− . (5)

From Equations (2) and (4), we can note that they are both
exponentially decreasing w.r.t. to the number of positives and
negatives respectively. However, in imbalanced scenarios, the
number of negatives is supposed to be much higher than the
number of positives. Thus, the probability of having a false
positive is decreasing faster than the probability of having a
false negative. We then choose to learn a matrix M under
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Figure 2: Illustration of the constraint λmax(M) ≤ 1. Without
learning the matrix M, the Euclidean distance is used both to com-
pare a query x to a negative Nx and to a positive x′. The isodis-
tance curves are thus spherical and identical (one in solid black for
Nx, one in dashed red for x′). By learning the matrix M, we virtu-
ally change the distance of the query to the positive examples. The
isodistance curves for the positives are now ellipses, like the one rep-
resented in red. In the example, the positive x′, that is outside the
sphere, is inside the ellipse and will thus be considered closer, with
the constraint λmax(M) ≤ 1, than the negative Nx that lies on the
black sphere. With this same constraint, we are sure that the ellipse
is enclosing the circle (i.e. ε

λmax
≥ ε) and so that all positives will

be brought closer to the query. In the end, this constraint ensures
that we increase the influence of the positives and thus leads to the
decrease of FN.

the constraint λmax(M) ≤ 1, so that our algorithm will fo-
cus first on reducing FN. An illustration of the impact of this
constraint in terms of decision boundaries is shown in Figure
3. The experiments in Section 5 will confirm that the use of
this constraint is very relevant from an F -Measure perspec-
tive and is able to reduce the number of FN at test time.

4 Theoretical Analysis
In this section, we provide generalization guarantees about
the learned metric M using the uniform stability frame-
work [Bousquet and Elisseeff, 2002] adapted to metric learn-
ing [Bellet et al., 2015]. Then, we use this result to derive
classification guarantees over a 1-Nearest Neighbor (1NN)
classifier making use of this metric. Note that the whole study
is conducted under the constraint λmax(M) ≤ 1 as used in
Problem (1).

First, we denote by ` the weighted combination of `FN and
`FP as defined in Problem (1) and FS the objective function
to optimize over the training set S = {zi}mi=1. We have

FS =
1

m3

m∑
i,j,k=1

`(M, (zi, zj , zk)) + µ‖M− I‖2F .

LetRS be the associated empirical risk over S defined as

RS =
1

m3

m∑
i,j,k=1

`(M, (zi, zj , zk)),

andR be the corresponding expected true risk defined as

R = E
S∼Dm

[RS ] = E
S∼Dm

 1

m3

m∑
i,j,k=1

`(M, (zi, zj , zk))


= E

z,z′,z′′∼D
[`(M, (z, z′, z′′))] .

Figure 3: Illustration of the impact of the constraint λmax(M) ≤ 1
in MLFP (bottom right) compared to kNN (top left), LMNN (top
right), ImbML (bottom left) on the autompg dataset with a 1NN
classifier. We perform a PCA, keeping the two most relevant dimen-
sions, and plot the test set on a mesh grid of the space. In light grey
(resp. white), areas classified as negative (resp. positive).

The last equality is due to the i.i.d. aspect of the expectation.
We also suppose that for all x, we have ‖x‖ ≤ K.

4.1 Uniform Stability
Intuitively, an algorithm is stable if its output, in terms of loss,
does not change significantly under a small modification of
the training sample. The supremum of this change must be
bounded in O(1/m).

Definition 1. A learning algorithm A has a uniform stability
in κ

m with respect to a loss function ` and parameter set θ,
with κ a positive constant if:

∀S, ∀i, 1 ≤ i ≤ m, sup
Z
|`(θS , Z)− `(θSi , Z)| ≤ κ

m
,

where S is a learning sample of size m, Z = (z1, z2, z3) =
((x1, y1), (x2, y2), (x3, y3)) is a triplet of labeled examples,
θS the model parameters learned from S, θSi the model pa-
rameters learned from the sample Si obtained by replacing
the ith example zi from S by another example z′i indepen-
dent from S and drawn from D. Finally, `(θS , Z) is the loss
suffered at Z.

In this definition, Si represents the notion of small mod-
ification of the training sample. The next definition aims to
study the evolution of the loss function according to the con-
sidered triplets Z and Z ′.

Definition 2. A loss function ` is said to be γ-admissible,
w.r.t. the distance metric M if (i) it is convex w.r.t. its first
argument and (ii) if the following condition holds:

∀Z,Z ′ |`(M, Z)− `(M, Z ′)| ≤ γ,

where Z = (zi, zj , zk) and Z ′ = (z′i, z
′
j , z
′
k) are two triplets

from a sample S and drawn from D.

From the two above definitions, we can state the following
generalization bound.



Theorem 1. Let δ > 0 and m > 2. Let S be a sample of
m randomly selected training examples. Let M be the matrix
learned from Problem (1) which has a uniform stability in

κ

m
.

The loss function ` as defined above is γ-admissible. With
probability 1− δ, the following bound on the true riskR of `
holds:

R ≤ RS + 2
κ

m
+ (2κ+ 2γ)

√
ln(2/δ)

2m
,

where

κ =
12

µ
× ((1− α)K2)2 and γ = (1− α)(1− c+ 4K2).

The derived bound provides guarantees on the generaliza-
tion performances of the learned metric on the distribution D
w.r.t. to the loss `. We now make use of this bound to provide
classification guarantees of a 1NN making use of the learned
metric M.

4.2 Classification Guarantees
We derive here generalization guarantees on the FP and FN
rates for a 1NN classifier making use of the metric M learned
by MLFP. Let S be the learning sample of size m used by a
nearest-neighbor classifier. Let us define the empirical risks
for FP and FN:

RFP (S) = Ez=(x,y)∼D1{dM(x,xp)2≤d(x,xn)2} × 1{y=−1}.

where xp,xn ∈ S are respectively the nearest positive and
negative neighbors of x in S. Symmetrically, we have:

RFN (S) = Ez=(x,y)∼D1{d(x,xn)2≤dM(x,xp)2} × 1{y=1}.

We consider then the expected true risks averaged over all the
training samples of size m:

RFP = ES∼DmRFP (S) andRFN = ES∼DmRFN (S).

We can now introduce our main result.
Theorem 2. Let δ > 0 and m > 0. Let S be a training sam-
ple of size m i.i.d. from a distribution D, z a new instance
i.i.d. from D, and let M be the learned matrix from Prob-
lem (1) which has a uniform stability in

κ

m
with respect to the

loss `. Considering that the loss function ` is γ-admissible,
let us denote byRS its empirical risk. With probability 1− δ,
we have the following bounds for the FP and FN rates:

RFP ≤
1

α

[
RS∪{z} +

2κ

m+ 1
+ (2κ+ 2γ)

√
ln(2/δ)

2(m+ 1)

]
,

RFN ≤
1

1− α

[
RS∪{z} +

2κ

m+ 1
+ (2κ+ 2γ)

√
ln(2/δ)

2(m+ 1)

]
.

By comparing these two bounds, one can observe that
when the class imbalance becomes important, i.e. when α
takes a low value, the guarantees on the FN rate become bet-
ter than the guarantees on FP. This result provides a theoret-
ical confirmation that our approach - thanks to the constraint
λmax(M) ≤ 1 - is able to focus more on reducing FN. An
illustration of this phenomenon will be shown in the next sec-
tion.

5 Experiments
In this section, we compare MLFP to other metric learning
algorithms, focusing on (highly) imbalanced datasets. For all
experiments, we use a 3-Nearest Neighbor classifier as done
in both [Weinberger and Saul, 2009] and [Wang et al., 2018].
Note that the source code allowing the interested reader to
reproduce these experiments is available1.

5.1 Experimental Setup
We use several public datasets from the UCI2 and KEEL3

repositories. These datasets are diverse in terms of imbalance
ratio (IR, number of majority examples per positive example),
dimension, number of examples, as shown in Table 1. All the
datasets are standardized by substracting the mean and divid-
ing by the standard deviation.

We use the F -Measure as the performance criterion to
compare the different methods.

Furthermore, 80% of the dataset is randomly selected in or-
der to train the model and 20% to test it. The different hyper-
parameters are tuned with a 10-fold-cross-validation over the
training set. The sampling of the test set is repeated 5 times
and we report the average results in terms of F -Measure (F1).

For our MLFP method, the hyper-parameters µ for the reg-
ularization and c for the margin are both tuned in the range
[0, 1], using a Bayesian optimization with 400 calls. The
Bayesian optimization is done with the Scikit-Optimize li-
brary4. As the matrix M can be expressed as LTL (Cholesky
decomposition), we directly learn a diagonal matrix L. Since
we are not particularly interested, in this paper, in low rank
matrices, we do not impose any constraint on the dimension
of L. At each iteration of the optimization process, the spec-
tral radius of the matrix L is constrained to be less than one
so that M = LTL has its largest value less than one.

We compare MLFP with several methods: The 3-Nearest
Neighbor algorithm (3NN), as a baseline. LMNN, where the
hyper-parameter µ, which controls the trade-off between the
two parts of the loss (see [Weinberger and Saul, 2009] for
more details), is tuned in [0, 1] using a Bayesian optimiza-
tion with 20 calls. ITML [Davis et al., 2007]. IML [Wang
et al., 2018] where we select 5k points for the sampling se-
lection and we also tune the hyper-parameter of the LMNN
algorithm in [0, 1]. We used 0.8 for the ratio of matching
as suggested in the paper. ImbML [Gautheron et al., 2019]
where the parameter m is tuned in {1, 10, 100, 1000, 10000},
the parameter λ in {0, 0.01, 0.1, 1, 10} and the parameter a in
[0, 1]. We also use a Bayesian optimization with 400 calls.

5.2 Results
The main results are reported in Table 1. Unsurprisingly, all
metric learning methods perform better than a 3NN. Further-
more, in terms of F -Measure, those which were designed to
deal with imbalanced scenarios perform better than LMNN
or ITML. However, the most competitive method is MLFP:

1 https://github.com/RemiViola/MLFP
2https://archive.ics.uci.edu/ml/datasets.html
3https://sci2s.ugr.es/keel/datasets.php
4https://scikit-optimize.github.io/

https://github.com/RemiViola/MLFP
https://archive.ics.uci.edu/ml/datasets.html
https://sci2s.ugr.es/keel/datasets.php
https://scikit-optimize.github.io/


DATASETS SIZE DIM IR 3NN LMNN ITML IML IMBML MLFP
(OURS)

BALANCE 625 4 1.2 0.880 ± 0.018 0.874 ± 0.019 0.931 ± 0.032 0.886 ± 0.029 0.960 ± 0.019 0.874 ± 0.003
AUTOMPG 392 7 1.7 0.780 ± 0.054 0.792 ± 0.031 0.801 ± 0.018 0.785 ± 0.021 0.790 ± 0.044 0.805 ± 0.021
IONOSPHERE 351 34, 1.8 0.745 ± 0.015 0.803 ± 0.049 0.831 ± 0.054 0.823 ± 0.044 0.786 ± 0.053 0.923 ± 0.026
PIMA 768 8 1.9 0.601 ± 0.042 0.591 ± 0.037 0.583 ± 0.022 0.591 ± 0.037 0.575 ± 0.026 0.635 ± 0.032
WINE 178 13 2 0.968 ± 0.016 0.992 ± 0.016 0.992 ± 0.016 0.992 ± 0.016 0.992 ± 0.016 0.961 ± 0.041
GLASS 214 9 2.1 0.735 ± 0.049 0.710 ± 0.064 0.759 ± 0.051 0.710 ± 0.064 0.716 ± 0.043 0.747 ± 0.034
GERMAN 1000 23 2.3 0.407 ± 0.049 0.358 ± 0.029 0.430 ± 0.073 0.352 ± 0.029 0.388 ± 0.043 0.511 ± 0.006
VEHICLE 846 18 3.3 0.850 ± 0.045 0.928 ± 0.024 0.931 ± 0.019 0.933 ± 0.026 0.937 ± 0.014 0.859 ± 0.037
HAYES 132 4 3.4 0.581 ± 0.210 0.824 ± 0.089 0.829 ± 0.071 0.824 ± 0.089 0.908 ± 0.083 0.930 ± 0.109
SEGMENTATION 2310 19 6 0.882 ± 0.031 0.888 ± 0.011 0.866 ± 0.029 0.895 ± 0.020 0.909 ± 0.028 0.882 ± 0.024
ABALONE8 4177 10 6.4 0.223 ± 0.025 0.220 ± 0.040 0.213 ± 0.025 0.228 ± 0.021 0.200 ± 0.023 0.336 ± 0.018
YEAST3 1484 8 8.1 0.719 ± 0.028 0.734 ± 0.020 0.742 ± 0.034 0.717 ± 0.032 0.723 ± 0.023 0.725 ± 0.022
PAGEBLOCKS 5473 10 8.8 0.855 ± 0.027 0.844 ± 0.027 0.850 ± 0.023 0.842 ± 0.027 0.865 ± 0.021 0.860 ± 0.022
SATIMAGE 6435 36 9.3 0.688 ± 0.034 0.707 ± 0.038 0.710 ± 0.024 0.710 ± 0.039 0.731 ± 0.030 0.697 ± 0.030
LIBRAS 360 90 14 0.694 ± 0.188 0.725 ± 0.105 0.722 ± 0.204 0.690 ± 0.120 0.729 ± 0.157 0.694 ± 0.066
REDWINEQUALITY4 1599 11 29.2 0.062 ± 0.075 0.057 ± 0.114 0.027 ± 0.053 0.000 ± 0.000 0.031 ± 0.062 0.083 ± 0.039
YEAST6 1484 8 41.4 0.560 ± 0.205 0.578 ± 0.246 0.523 ± 0.205 0.629 ± 0.244 0.606 ± 0.148 0.527 ± 0.152
ABALONE17 4177 10 71 0.000 ± 0.000 0.000 ± 0.000 0.029 ± 0.057 0.000 ± 0.000 0.073 ± 0.000 0.053 ± 0.033
ABALONE20 4177 10 159.7 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.044 ± 0.089 0.000 ± 0.093 0.078 ± 0.029
MEAN 0.591 0.612 0.619 0.613 0.627 0.643

Table 1: Mean results (and standard deviations) in terms of F -Measure over 5 experiments for the different Metric Learning methods, with
3NN as final classifier, on datasets sorted by imbalance ratio (IR=m−/m+). The properties of the considered datasets are given on the left
hand part of the table: size, dimension and IR. The mean over all datasets among ML methods is given and the best results are in bold, the
standard deviation is indicated with the ± sign.
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Figure 4: Average percentage of false negatives for each dataset at
test time (see Section 5 for more details), for kNN and MLFP with
or without the constraint on λmax. On 14 datasets (with ∗) over
19, the number of FN is lower for the version with the constraint.
Note that the number of FN is always lower with MLFP compared
to kNN.

the F -Measure is increased on average by 1.6 points com-
pared to the second best method (ImbML). More precisely,
our MLFP outperforms all the other methods on 8 (over 19)
datasets. The fact that MLFP works better than ImbML
shows the advantage of learning a specific metric when com-
puting distances to positive examples. Furthermore, as shown
on Figure 3, both ImbML and MLFP focuses on the minor-
ity class, but they perform this task in a different way. Our
method tries to reduce the number of FN by increasing the
decision boundaries around each of positive. In ImbML, the
possibility of having large margins in the learned space has
the disadvantage of creating larger areas of negative classifi-
cation and this potentially increases the risk of FN.

In the theoretical part of this paper, we have proved that
learning a matrix M under the constraint λmax(M) ≤ 1 al-
lows our algorithm to focus first on reducing FN. An illus-
tration of the impact of this contraint in terms of false nega-
tives is shown in Figure 4 on the 19 datasets. This figure re-
ports the percentage of false negatives at test time generated
by the 3NN algorithm and MLFP with or without the con-

straint. The results show that, compared to a 3NN algorithm,
MLFP systematically reduces the number of false negatives
and thus has the desired effect. When comparing MLFP with
and without the constraint, we can note that on 14 datasets
out of 19, the use of the constraint λmax(M) ≤ 1 leads at test
time to a smaller number of false negatives.

6 Conclusion
In this paper, we have proposed a new metric learning algo-
rithm to deal with imbalanced datasets. In this setting, find-
ing the good compromise between the false negative and false
positive rates is still an open problem. The original contribu-
tion of this paper comes from the optimization in our algo-
rithm MLFP of a Mahalanobis distance which is only used
to compare a new query to positive examples, while the Eu-
clidean distance is still used when for comparing that query to
negative samples. A constraint on the maximum eigenvalue
of the learned matrix is introduced and has been shown to be
provably efficient to reduce the false negative rate. Our paper
is supported by a theoretical study and an extensive experi-
mental evaluation showing that MLFP outperforms state-of-
the-art metric-learning methods.

This work opens the door to two promising lines of re-
search. First, in MLFP we learn a linear projection of the
data. One interesting perspective would consist in kerneliz-
ing our metric learning algorithm or designing a deep learning
version allowing us to capture non linearity. A simpler solu-
tion might also consist in learning different local metrics for
different regions of the input space as done in [Zantedeschi
et al., 2016]. Second, as initiated in [Sharma et al., 2018],
combining a Mahalanobis distance with a sampling strategy
might lead to a new family of imbalanced learning methods.

Acknowledgements
This work was supported by the following projects: AURA
project TADALoT (Pack Ambition 2017, 17 011047 01),
ANR project LIVES (ANR-15-CE23-0026) and IDEXLYON
project ACADEMICS (ANR-16-IDEX-0005).



References
[Abdallah et al., 2016] Aisha Abdallah, Mohd Aizaini

Maarof, and Anazida Zainal. Fraud detection system: A
survey. Journal of Network and Computer Applications,
68:90–113, 2016.

[Aggarwal, 2017] Charu C. Aggarwal. Outlier Analysis.
Springer International Publishing, 2017.
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[Gautheron et al., 2019] Léo Gautheron, Emilie Morvant,
Amaury Habrard, and Marc Sebban. Metric learning from
imbalanced data. In arXiv. 1909.01651, 2019.

[Huang et al., 2016] Chen Huang, Yining Li, Chen
Change Loy, and Xiaoou Tang. Learning deep rep-
resentation for imbalanced classification. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 5375–5384, 2016.

[Khan et al., 2017] Salman H. Khan, Munawar Hayat, Mo-
hammed Bennamoun, Ferdous A. Sohel, and Roberto
Togneri. Cost-sensitive learning of deep feature represen-
tations from imbalanced data. IEEE transactions on neural
networks and learning systems, 29(8):3573–3587, 2017.

[Kulis and others, 2013] Brian Kulis et al. Metric learning:
A survey. Foundations and Trends R© in Machine Learn-
ing, 5(4):287–364, 2013.

[Mathew et al., 2015] Josey Mathew, Ming Luo, Chee Khi-
ang Pang, and Hian Leng Chan. Kernel-based smote
for svm classification of imbalanced datasets. In IECON
2015-41st Annual Conference of the IEEE Industrial Elec-
tronics Society, pages 001127–001132. IEEE, 2015.
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Emonet, and Marc Sebban. Metric learning as convex
combinations of local models with generalization guaran-
tees. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1478–1486, 2016.

[Zhang et al., 2019] Xiaogang Zhang, Dingxiang Wang, Yi-
cong Zhou, Hua Chen, Fanyong Cheng, and Min Liu. Ker-
nel modified optimal margin distribution machine for im-
balanced data classification. Pattern Recognition Letters,
125:325–332, 2019.


	Introduction
	Related Work
	Metric Learning for Imbalanced Data
	Problem Formulation
	On the Impact of the Constraint

	Theoretical Analysis
	Uniform Stability
	Classification Guarantees

	Experiments
	Experimental Setup
	Results

	Conclusion

