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1 Additional experiments

Compared to the baseline method PBRFF, our two proposed methods GBRFF1
and GBRFF2 rely on different strategies in order to obtain an effective and
efficient classifier. In the following, we propose different experiments that give
some insights on the impact of the strategies used on both the classification
accuracy and the computation time.

1.1 The importance of learning the landmarks in GBRFF1

Our method GBRFF1 is based on PBRFF but is different in two points: (i) it
learns the model at the same time as the representation instead of first learning
the representation and then the model and (ii) it learns the landmarks used to
build the representation instead of selecting them randomly from the training
set. We compare these two methods to a variant called GBRFF0.5 which is
identical to GBRFF1 except that we do not learn the landmarks in this variant,
but we select them randomly as done in PBRFF. Figure 1 compares these three
methods. We see that GBRFF0.5 is faster than PBRFF but that it also has a
lower accuracy. Thus, simply adapting the two step learning method of PBRFF
in the one step learning method GBRFF0.5 degrades the performances while
slightly decreasing the computation time. These lower performances might come
from the boosting classifier which is less effective than the SVM classifier in
this setting. However, when comparing GBRFF0.5 and GBRFF1, we see that
learning the landmarks allows to improve the accuracy which becomes better
than the one obtained by PBRFF, but at the expense of the computation time
which becomes superior than both GBRFF0.5 and PBRFF. These promising
results in terms of accuracies motivate us to improve the learning strategy of the
landmarks in GBRFF1 to make it more efficient.
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Fig. 1. Mean accuracy (left) and sum of computation time using the best parameters
found with cross-validation (right) over 20 train/test splits and over the 15 first datasets
(except “bankmarketing”) for the three methods PBRFF, GBRFF0.5 and GBRFF1
using from 1 to 50 landmarks.

1.2 Improving the efficiency of GBRFF1

A key element of both PBRFF and GBRFF1 is K, the amount of random
features used for each landmark. We compare the performances and computation
time of GBRFF1 when using different numbers of random features per landmark.
The results of this experiment are in Figure 2. As expected, the accuracy is better
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Fig. 2. Mean accuracy (left) and sum of computation time using the best parameters
found with cross-validation (right) over 20 train/test splits and over the 15 first datasets
(except “bankmarketing”) for GBRFF1 with K ∈ {1, 5, 10, 20} random features used
per landmark using from 1 to 50 landmarks.

using more random features per landmark, but at the expense of presenting
increasingly higher computation times. It seems that the higher the amount of
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random features is, the smaller the gain is in accuracy but the higher the addition
to the computation time is. To illustrate this, we present in Figure 3 the accuracy
divided by the computation time. The results show that GBRFF1 with K = 1
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Fig. 3. Mean accuracy divided by sum of computation time using the best parameters
found with cross-validation for GBRFF1 with K ∈ {1, 5, 10, 20} random feature used
per landmark using from 1 to 50 landmarks over 20 train/test splits and over the 15
first datasets (except “bankmarketing”).

presents the best compromise accuracy/computation time, meaning that even
if for a fixed amount of landmarks T we can obtain better performances with
a large value of K, it is more interesting to set K = 1 and use a large amount
of landmarks T to obtain similar performances in less time. This behavior is
confirmed by the results presented in Figure 4 showing that for different values
of T ×K, we need to set K = 1 and use a large value of T to obtain the best
accuracy. To understand why it is better to use a small amount K of random
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Fig. 4. Mean results over the 16 datasets w.r.t. the same total amount of random
features T×K for K∈{1, 5, 10, 20}, with T the amount of boosting iterations.

features per landmark, but a large amount of landmarks T , we remind the formula
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of the final predictor of GBRFF1 for a given example x which is

sign

H0(x) +

T∑
t=1

αt
K∑
j=1

qtj cos
(
ωt

j · (xt − x)
)

but that simplifies when K = 1 to

sign

(
H0(x) +

T∑
t=1

αt cos
(
ωt · (xt − x)

))
.

At a given iteration t, the objective is to learn the landmark xt, the boosting
weight αt and the random feature weights qt that fit well the residuals defined
by the exponential loss. Consequently, if K increases, so does the amount of
constraints imposed at a given iteration to learn the landmark and the boosting
weight. A possible explanation is that when K = 1, it is simpler to find a landmark
and a weight αt that correctly fit the residuals because both of them are less
constrained, but that when using a large amount of random features, there is no
possible solution that fits well the residuals under the constraints imposed by
the random features.

The results presented motivate us to build upon GBRFF1 using the smallest
possible amount of random feature K = 1 per landmark.

1.3 From GBRFF1 to GBRFF2
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Fig. 5. Mean accuracy (left) and sum of computation time using the best parameters
found with cross-validation (right) over 20 train/test splits and over the 15 first datasets
(except “bankmarketing”) for GBRFF1, GBRFF1.5 and GBRFF2 using from 1 to
50 landmarks.

Our proposed method GBRFF2 is different from GBRFF1 as (i) it uses a
unique random feature per landmark and because (ii) the random part of the
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random feature ω is learned instead of fixed randomly. We introduce a variant
called GBRFF1.5 identical to GBRFF2 except for ω which is not learned but
remains fixed randomly. This variant is different from GBRFF1 because the use
of a unique random feature allows to learn a single scalar instead of a landmark
vector to obtain the same model as GBRFF1 with K = 1 more efficiently. The
comparison in Figure 5 between GBRFF1 with K = 1 and GBRFF1.5 shows
as expected that the two methods have exactly the same performances but with a
much smaller computation time for GBRFF1.5. This confirms that when using
a unique random feature, it is equivalent to learn a single scalar in [−π, π] and a
landmark vector in Rd, but that it is much faster.

On the other hand, GBRFF2 gives much better performances than GBRFF1.5,
especially with a very small amount of landmarks, but at the expense of the
computation time. Compared with GBRFF1, GBRFF2 is faster for K > 1 or
as fast for K = 1, and GBRFF2 also achieves higher performances, even when
using K = 20 random features for GBRFF1.


