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1 Introduction and Notations

We will denote by z = (x, y) the couple features-label where x ∈ Rd and y ∈ {−1, 1} and S = {zi}mi=1

a set of m training examples drawn from an unknown distribution D. We denote by m+ the number
of positives and m− the number of negatives. Thus the rate of positives α is equal to

m+

m
. Suppose

that x′ is a test instance, we recall that:

• dM = dM(x′,x) =
√

(x− x′)TM(x− x′) if x is a positive instance,

• d = dI(x
′,x) = d(x

′,x) =
√

(x− x′)T (x− x′) otherwise.

We are considering the following optimization problem:

min
M∈S+

1

m3

(1− α)
∑

(xi,xj ,xk)
yi=yj 6=yk=−1

`FN(M, zi, zj , zk) + α
∑

(xi,xj ,xk)
yi=yj 6=yk=1

`FP(M, zi, zj , zk)

+

µ‖M− I‖2F (1)

Our loss function can thus be seen as :

`(M, (z1, z2, z3)) =


(1− α)× `FN(M, z1, z2, z3) if yi = yj = 1, yk = −1,

α× `FP(M, z1, z2, z3)] if yi = yj = −1, yk = 1,

0 otherwise,
,

where `FN and `FP are defined by:

• `FN(M, zi, zj , zk) = [1− c+ dM(xi,xj)
2 − d(xi,xk)

2]+,
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• `FP(M, zi, zj , zk) = [1− c+ d(xi,xj)
2 − dM(xi,xk)

2]+.

In the following, we will also suppose that for all x we have: ‖x‖2 ≤ K. Furthermore, we will denote
by RS and R respectively the empirical risk of ` over the training sample S and the true risk. More
precisely, the empirical risk RS is evaluated using a training set of size m which is used to build all
the triplets and the true risk R is its expectation over all the samples of size m, i.e. R = E

S∼Dm
[RS ].

• d = dM(x′,x) =
√

(x− x′)TM(x− x′) if x is a positive instance,

• d = dI(x
′,x) =

√
(x− x′)T (x− x′).

In the following, we will also use the following constraint on M :

λmax(M) ≤ 1, where λmax is the largest eigenvalue of M.

Finally, due to the context of our study, i.e. imbalanced setting, α < 1/2. Thus, α < 1− α.

2 Generalization Guarantees

The aim of this section is to provide some generalization guarantees on our loss function according
to the used loss function. Note that the following results give guarantees on the learned metric M
which aims to find a good compromise between achieving a low rate of False Negatives while keeping
a reasonable rate of False Positives.

2.1 Uniform Stability

In this section, we briefly restate the definition of stability and the generalization bound based on
this notion.
Roughly speaking, an algorithm is stable if its output, in terms of difference between losses, does
not change significantly under a small modification of the training sample. This variation must be
bounded in O(1/m) in terms of infinite norm where m is the size of the training set S i.i.d. from an
unknown distribution D.

Definition 1. [Definition 6 (Bousquet and Elisseeff, 2002)] A learning algorithm A has a uniform
stability in κ

m with respect to a loss function ` and parameter set θ, with κ a positive constant if:

∀S, ∀i, 1 ≤ i ≤ m, sup
Z
|`(θS , Z)− `(θSi , Z)| ≤ κ

m
,

where S is a learning sample of size m, Z = (z1, z2, z3) = ((x1, y1), (x2, y2), (x3, y3)) is a triplet of
labeled examples, θS the model parameters learned from S, θSi the model parameters learned from
the sample Si obtained by replacing the ith example zi from S by another example z′i independent
from S and drawn from D. `(θS ,x) is the loss suffered at x.

In this definition, Si represents the notion of small modification of the training sample. The following
one aims to study the evolution of the loss function according to the label of the considered triplet.

Definition 2. A loss function ` is said to be γ-admissible, with respect to the distance metric M if
(i) it is convex with respect to its first argument and (ii) the following condition holds:

∀Z,Z ′ |`(M, Z)− `(M, Z ′)| ≤ γ,

where Z = (zi, zj , zk) and Z ′ = (z′i, z
′
j , z
′
k) are two triplets of examples.
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2.2 Preliminary Results

We now introduce the results we need to derive our generalization guarantees:

Proposition 1. Let X1, ..., Xm be m independent random variables taking values in R and let
U = f(X1, ..., Xm). If for each 1 ≤ i ≤ m, there exists a constant ci such that:

sup
x1,...xm∈R

|f(x1, ..., xm)− f(x1, ...x
′
i, ..., xm)| ≤ ci,

then for any positive constant B, we have:

P[|U − E[U ]| ≥ B] ≤ 2 exp

(
−2B2∑m
i=1 c

2
i

)
.

In the following, we set DS = R − RS . We then introduce the two following lemmas, for which
the proof can be found in (Bellet et al., 2015) (see the proofs of Lemma 8.9 and 8.10 respectively).
However, note that results have been adapted to our context, i.e. for triplet based loss function. But
the proofs can be easily adapted.

Lemma 1. For any learning method of estimation error DS and satisfying a uniform stability in
κ

m
, we have ES [DS ] ≤ 2κ

m
.

Lemma 2. For any parameter matrix M using m training examples, and any loss function `
satisfying the γ-admissibility, we have the following bound:

∀i, 1 ≤ i ≤ m, |DS −DSi | ≤
2κ

m
+

2γ

m
.

Using the above Proposition and the two Lemmas, we are able to get the following generalization
bound:

Theorem 1. Let δ > 0 and m > 1. Let S be a sample of m randomly selected training examples
and let M be the learned parameter matrix from an algorithm with uniform stability

κ

m
. Assuming

that the loss function ` is k-Lipschitz and γ-admissible and let us denote by RS its empirical risk.
With probability 1− δ, we have the following bound on the true risk R of our loss function `:

R ≤ RS + 2
κ

m
+ (2κ+ 2γ)

√
ln(2/δ)

2m
.

2.3 Generalization Bound

We first prove that our function is k-Lipschitz according to the following definition.

Definition 3. A loss function ` is k-Lipschitz with respect to its first argument if for any parameters
matrices M and M′, and for any triplets of labeled examples Z = (z1, z2, z3), we have:

|`(M, Z)− `(M′, Z)| ≤ k‖M−M′‖F .

Lemma 3. We now show that our loss function ` is k-Lipschitz with k = 4(1− α)K2
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Proof. We need to study two cases, according to the label of the triplets.

Case 1: yi = yj = 1, yk = −1

|`(M, Z)− `(M′, Z)| = (1− α)|[1− c+ dM(xi,xj)
2 − d(xi,xk)

2]+ − [1− c+ dM′(xi,xj)
2 − d(xi,xk)

2]+|,
≤ (1− α)|dM(xi,xj)

2 − dM′(xi,xj)
2|,

= (1− α)|(xi − xj)
T (M−M′)(xi − xj)|,

= (1− α)|‖xi − xj‖22‖M−M′‖F ,
|`(M, Z)− `(M′, Z)| ≤ 4(1− α)K2‖M−M′‖F

where the second line uses the fact that the hinge loss is 1-Lipschitz, the third line uses the linearity
of the difference with respect to M,M′, the fourth line uses usual properties on norms and the last
line the fact that ‖x‖ ≤ K.

Case 2: yi = yj = −1, yk = 1
The proof is similar to the proof given in the previous case and leads to the following result:

|`(M, Z)− `(M′, Z)| ≤ 4αK2‖M−M′‖F .

We conclude by taking the maximum of the three previous values. Thus k = 4(1− α)K2

Now, we have to prove that our loss function is γ-admissible according to the definition 2.

Lemma 4. The loss function ` defined by (1) is γ-admissible with respect to the distance metric M,
with γ = (1− α)(1− c+ 4K2).

Proof. Needless to say that the loss function ` is convex with respect to M as the sum of two convex
functions. Indeed, both of them are linear w.r.t. M and the maximum of two convex functions
remains convex.
Furthermore, because our loss function can be equal to zero for some labels of our triplets, we are
looking for the greatest value than our loss function ` can achieve.

Using our previous result, we can bound the first part ellFN by: (1− α)(1− c+ 4K2) and the last
term ellFP by: α(1− c+ 4K2).

Finally:

∀ Z,Z ′ |`(M, Z)− `(M, Z ′)| ≤ max((1− α)(1− c+ 4K2), α(1− c+ 4K2)).

Thus, γ = (1− α)(1− c+ 4K2).

Definition 4. A learning algorithm has a uniform stability in κ
m where κ is a positive constant, if

given any training set S we have:

∀i, sup
Z
|`(M, Z)− `(Mi, Z)| ≤ κ

m
,

where M i is the matrix learned with a training set Si which differs from S of only one example
(xi → x′i).
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For the sake of clarity for the following development, let us denote by FS the objective function to

optimize over the training set S, i.e. FS =
1

m3

∑
xi,xj ,xk

`(M, Z) + µ‖M− I‖2F .
To compute the constant of uniform stability, we first need the following technical lemma:

Lemma 5. Let S be a learning sample, let FS and FSi be two objective functions with respect to two
samples S and Si and let M and Mi be their respective minimizers. We also define ∆M = Mi −M
and recall that N(M) = µ‖M− I‖2F . For all t ∈ [0, 1], we have:

N(M)−N(M + t∆M) +N(Mi)−N(Mi − t∆M)

≤ 2t

µm3
[3m(m− 1) + 1]×

(
4(1− α)K2

)
× ‖∆M‖F .

Proof. Since ` (the hinge loss) is convex, so is the empirical risk and thus for all t ∈ [0, 1] we have
the two following inequalities:

RSi(M + t∆M)−RSi(M, R) ≤ tRSi(Mi)− tRSi(M).

and
RSi(Mi − t∆M)−RSi(Mi) ≤ tRSi(M)− tRSi(Mi).

We get the second inequality by swapping the role of M and Mi. If we sum these two inequalities,
the right hand side vanishes and we obtain:

RSi(M + t∆M)−RSi(M) +RSi(Mi − t∆M)−RSi(Mi) ≤ 0. (2)

By assumption on M and Mi we have:

FS(M, R)− FS(M + t∆M) ≤ 0,

FSi(Mi)− FSi(Mi − t∆M) ≤ 0,

then, summing the two previous inequalities and using (2), we get:

RSi(M + t∆M)−RS(M + t∆M)−RSi(M) +RS(M)

+ µ[‖M− I‖2F + ‖Mi − I‖2F − ‖M + t∆M− I‖2F − ‖Mi − t∆M− I‖2F ] ≤ 0. (3)

We now focus on the first part of the previous inequality. For the sake of simplicity, let us set:

H = RS(M + t∆M)−RSi(M + t∆M) +RSi(M)−RS(M).

H ≤ |RS(M + t∆M)−RSi(M + t∆M) +RSi(M)−RS(M)| ,

≤ 1

m3

∣∣∣∣∣∣
∑

zi,zj ,zk∈Sl

`(M, zli, z
l
j , z

l
k)−

∑
zi,zj ,zk∈S

`(M, zi, zj , zk)

∑
zi,zj ,zk∈S

`(M + t∆M, zi, zj , zk)−
∑

zi,zj ,zk∈Sl

`(M + t∆M, zli, z
l
j , z

l
k)

∣∣∣∣∣∣ ,
where S and Sl differ from the l-th example, i.e. ∀i, j, k 6= l, zi = zli, zj = zlj and zk = zlk.
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We will now focus on the first difference in the previous expression, i.e. on:∑
zi,zj ,zk∈Sl

`(M, zli, z
l
j , z

l
k)−

∑
zi,zj ,zk∈S

`(M, zi, zj , zk).

This difference can be decomposed into two parts according to the value of the index i: when i = l
and when i 6= l:

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
j=1

m∑
k=1

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
The first part of the decomposition is composed of m2 terms that are at least not equal to zero. We,
thus have to work on the second part of the decomposition has it contains some terms that are equal
to zero. We will have to do this process two times as follows:

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
j=1

m∑
k=1

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
,

=

m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
k=1

(
`(M, zli, z

l
l , z

l
k)− `(M, zi, zl, zk)

)
+

m∑
i 6=l

m∑
j 6=l

m∑
k=1

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
,

=
m∑
j=1

m∑
k=1

(
`(M, zll , z

l
j , z

l
k)− `(M, zl, zj , zk)

)
+

m∑
i 6=l

m∑
k=1

(
`(M, zli, z

l
l , z

l
k)− `(M, zi, zl, zk)

)
+

m∑
i 6=l

m∑
j 6=l

(
`(M, zli, z

l
j , z

l
l)− `(M, zi, zj , zl)

)
+

m∑
i 6=l

m∑
j 6=l

m∑
k 6=l

(
`(M, zli, z

l
j , z

l
k)− `(M, zi, zj , zk)

)
︸ ︷︷ ︸

=0

.

All these sums are respectively composed of m2, m(m− 1) and (m− 1)2 terms and the last (m− 1)3

terms are all equal to zero. Furthermore: m2 +m(m− 1) + (m− 1)2 = 3m(m− 1) + 1, so that we
have to find a bound on the supremum of the difference:

[3m(m− 1) + 1] sup
Z,Z′
|`(M, Z)− `(M, Z ′) + `(M + t∆M, Z)− `(M + t∆M, Z ′)|.
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Thus, H can be upper-bounded by:

H ≤ 1

m3
(m− 1) + 1] (sup

Z,Z′
|`(M, Z)− `(M+, Z ′) + `(M + t∆M, Z)− `(M + t∆M, Z ′)|).

We can then write:

H ≤ 1

m3
(m− 1) + 1] (sup

Z
|`(M + t∆M, Z)− `(M, Z)|+ (sup

Z′
|`(M + t∆M, Z ′)− `(M+, Z ′)|),

≤ 2t

m3
[3m(m− 1) + 1]× ‖∆M‖F ×

(
4(1− α)K2

)
,

where the last lines uses Lemma 3 and properties on norms. Finally, we have :

N(M)−N(M+ t∆M)+N(Mi)−N(Mi− t∆M) ≤ 2t

µm3
[3m(m−1)+1]×

(
4(1− α)K2

)
×‖∆M‖F

(4)

We are now able to prove the uniform stability of our algorithm.

Theorem 2. Let S be a learning sample of size m, the algorithm (1) has a uniform stability in
κ

m

with κ =
6

µ
×
(
4(1− α)K2

)2.
Proof. Let us set t =

1

2
in the result of Lemma 5 and we focus on the left hand side of this result.

We have:

f(M) = ‖M− I‖2F + ‖Mi − I‖2F − ‖
1

2
(M + Mi)− I‖2F − ‖

1

2
(M + Mi)− I‖2F ,

= ‖M− I‖2F + ‖Mi − I‖2F −
1

2
‖M + Mi − I‖2F ,

f(M) =
1

2
‖M−Mi‖2F .

Then, using Lemma 5, we get the following bound on ‖∆M‖F .

‖∆M‖2F ≤ 8

µm3
[3m(m− 1) + 1]×

(
(1− α)K2

)
× ‖∆M‖F ,

‖∆M‖F ≤ 8

µm3
[3m(m− 1) + 1]×

(
(1− α)K2

)
.

To prove the uniform stability of our algorithm, it remains to find the value κ such that:

∀S, ∀i, 1 ≤ i ≤ m, sup
Z
|`(M, Z)− `(Mi, Z)| ≤ κ

m
.

To do this, we use the fact that our loss function ` is k-Lipsichtz with k =
(
4(1− α)K2

)
and our

upper-bound on ‖∆M‖F . It gives:

|`(M, Z)− `(Mi, Z)| ≤ k‖∆M‖F ,

≤ 2k2(3m2 − 3m+ 1)

µm3
.

7



Finally:
∀S, ∀i, 1 ≤ i ≤ m, sup

Z
|`(M, Z)− `(Mi, Z)| ≤ κ

m3
,

with κ =
4(3m2 − 3m+ 1)

µ
×
(
(1− α)K2

)2.
For the sake of simplicity, we will simplify this result in the following. Note that for all m ≥ 1,
3m2 − 3m+ 1

m3
≤ 3

m
. Thus, our algorithm has a uniform stability in

κ

m
with κ =

12

µ
×
(
(1− α)K2

)2.
We can now apply Theorem 1 to our algorithm and get the following result:

Theorem 3. Let δ > 0 and m > 1. With probability 1− δ, we have the following bound on the true
risk R of our loss function `:

R ≤ RS + 2
κ

m
+ (2κ+ 2γ)

√
ln(2/δ)

2m
,

with:
κ =

12

µ
×
(
(1− α)K2

)2
.

and
γ = (1− α)(1− c+ 4K2).

Proof. The proof is consequence of Theorem 1 and Lemma 4.

3 Classification Guarantees - Proof

We now give a proof of the Theorem 3 provided in the paper.

Proof. We first begin with the FP rate. We can note the hinge loss can be a surrogate for the
indicator function as follows:

1{dM(x,xpi )≤d(x,xn)} = 1{dM(x,xpi )
2≤d(x,xn)2} ≤

[
1 + d(x,xn)2 − dM(xi,xp)

2
]
+
,

We can recognize one of the term of our optimization Problem (1) with the hyper-parameter c = 0.
We recall that each labeled example is denoted as z = (x, y). Then, we have:

RFP ≤ ES∼DmEz∼D
[
1 + d(x,xn)2 − dM(x,xp)

2
]
+
× 1{y=−1}

≤ ES′∼Dm+1Ezi,zj ,zk∈S′
[
1 + d(xi,xj)

2 − dM(xi,xk)
2
]
+
,×1{yi=yj=−16=yk}

≤ ES′∼Dm+1Ezi,zj ,zk∈S′

[α
α

[
1 + d(xi,xj)

2 − dM(xi,xk)
2
]
+
× 1{yi=yj=−16=yk}+

1− α
α

([
1 + dM(xi,xj)

2 − d(xi,xk)
2
]
+
× 1{yi=yj=16=yk}

)]
,

≤ ES′∼Dm+1Ezi,zj ,zk∈S′

[
1

α

(
α
[
1 + d(xi,xj)

2 − dM(xi,xk)
2
]
+
× 1{yi=yj=−16=yk}+

(1− α)
[
1 + dM(xi,xj)

2 − d(xi,xk)
2
]
+
× 1{yi=yj=16=yk}

)]
,

≤ 1

α
R.
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The second inequality is obtained by the i.i.d. aspect of the expectation. The third inequality is due
to the fact that the second term in the sum is positive. Finally, one can note that the right-hand
side of the last inequality corresponds to a weighted version of the true risk with respect to the loss
used in Problem (1) with c = 0 and where we take an expectation over all the samples of size m+ 1.
The result is obtained by combining the results of Theorems 3 and 1 over the true risk defined above.

The bound for the false negative can be obtained in a similar way. Using the same arguments, one
can show that:

RFN ≤
1

1− α
R.

Applying Theorems 3 and 1 to the above risk leads to the result.
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