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Due to the inability of the accuracy-driven methods to address the challenging prob-

lem of learning from imbalanced data, several alternative measures have been proposed in

the literature, like the Area Under the ROC Curve (AUC), the Average Precision (AP),
the F-measure, the G-Mean, etc. However, these latter measures are neither smooth,

convex nor separable, making their direct optimization hard in practice. In this paper,

we tackle the challenging problem of imbalanced learning from a nearest-neighbor (NN)
classification perspective, where the minority examples typically belong to the class of

interest. Based on simple geometrical ideas, we introduce an algorithm that rescales the

distance between a query sample and any positive training example. This leads to a mod-
ification of the Voronoi regions and thus of the decision boundaries of the NN classifier.

We provide a theoretical justification about this scaling scheme which inherently aims

at reducing the False Negative rate while controlling the number of False Positives. We
further formally establish a link between the proposed method and cost-sensitive learn-

ing. An extensive experimental study is conducted on many public imbalanced datasets

showing that our method is very effective with respect to popular Nearest-Neighbor
algorithms, comparable to state-of-the-art sampling methods and even yields the best

performance when combined with them.

Keywords: Machine Learning; Nearest Neighbor Algorithm; Imbalanced Classification.

1. Introduction

While the machine learning community can benefit nowadays from larger and larger

datasets for optimizing provably accurate classifiers, many real world applications

still suffer from a lack of data, especially in imbalanced learning, where the positive

examples are very scarce compared with the number of negative samples [1–3]. This

is typically the case in intrusion detection, health care insurance or bank fraud iden-

tification, and more generally anomaly detection, e.g., in medicine or in industrial

1



October 30, 2021 21:20 WSPC/INSTRUCTION FILE ijait

2 A Nearest Neighbor Algorithm for Imbalanced Classification

processes. In such a setting, the training set is composed of a few positive examples

(e.g., the frauds) and a huge amount of negative samples (e.g., the genuine transac-

tions). Standard learning algorithms struggle to deal with this imbalance scenario

because they are typically based on the minimization of (a surrogate of) the 0-1

loss. Therefore, a trivial solution consists in assigning the majority label to any test

query, leading to a high performance from an accuracy perspective but completely

missing the (positive) examples of interest. To overcome this issue, several strategies

have been developed over the years. The first one consists in the optimization of

loss functions based on measures that are more appropriate for this context such as

the Area Under the ROC Curve (AUC), the Average Precision (AP), the G-mean

(GM), the Balanced-Accuracy (BA) or the F-measure to cite a few [4–6]. The main

pitfalls related to such a strategy concern the difficulty to directly optimize non

smooth, non separable and non convex measures (see [7] for the specific case of

the F-measure). A simple and usual solution to fix this problem consists in using

off-the-shelf learning algorithms (maximizing the accuracy) and a posteriori pick

the model with the highest AP, GM, BA or F-measure. Unfortunately, this might

be often suboptimal. A more elaborate solution aims at designing differentiable ver-

sions of the previous non-smooth measures and optimizing them, e.g., as done by

gradient boosting in [8] with a smooth surrogate of the Mean-AP. The second fam-

ily of methods is based on the modification of the distribution of the training data

using sampling strategies [9]. This is typically achieved by removing examples from

the majority class, as done, e.g., in ENN or Tomek’s Link [10], and/or by adding

examples from the minority class, as in SMOTE [11] and its variants, or by resorting

to generative adversarial models [12]. One peculiarity of imbalanced learning can be

interpreted from a geometric perspective. As illustrated in Fig. 1 (left) which shows

the Voronoi cells on an artificial imbalanced dataset (where two adjacent cells have

been merged if they concern examples of the same class), the regions of influence

of the positive examples are much smaller than that of the negatives. This explains

why at test time, in imbalanced learning, the risk to get a false negative (e.g., a

fraud that is wrongly classified as a genuine transaction) is high. A large number of

false negatives (FN) leads to a dramatic decrease of the aforementioned measures

that all rely on a fine balance between FN and the number of false positives FP ,

building blocks of the so-called Precision = TP
TP+FP and Recall = TP

TP+FN where

TP is the number of true positives. Note that increasing the regions of influence of

the positives would mechanically reduce FN . However, not controlling the expan-

sion of these regions, as illustrated in Fig. 1 (right), may have a dramatic impact

on FP , and thus on the previous performance measures.

The main contribution of this paper is about the problem of finding the appropri-

ate trade-off (Fig. 1 (middle)) between the two above-mentioned extreme situations

(large FP or FN , both leading to a poor performance at test time). A natural way

to increase the influence of positives may consist in using generative models (like

GANs [12]) to sample new artificial examples, mimicking the negative training sam-

ples. However, beyond the issues related to the parameter tuning, the computation
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Fig. 1. Toy imbalanced dataset: On the left, the Voronoi regions around the positives are small.

The risk to generate false negatives (FN) at test time is large. On the right: by increasing too
much the regions of influence of the positives, the probability to get false positives (FP) grows. In

the middle: an appropriate trade-off between the two previous situations.

burden and the complexity of such a method, using GANs to optimize the preci-

sion and recall is still an open problem (see [13] for a recent study on this topic).

We show in this paper that a much simpler strategy can be used by modifying

the distance exploited in a k-nearest neighbor (k−NN) algorithm [14] which enjoys

many interesting advantages, including its simplicity, its capacity to approximate

asymptotically any locally regular density, and its theoretical rootedness [15–17].

k−NN also benefited from many algorithmic advances during the past decade in

the field of metric learning, aiming at optimizing under constraints the parameters

of a metric, typically the Mahalanobis distance, as done in LMNN [18] or ITML [19]

(see [20,21] for a survey). Unfortunately, existing metric learning methods are ded-

icated to enhance the k−NN accuracy and do not focus on the optimization of

criteria, like the F-measure or G-mean, in scenarios where the positive training ex-

amples are scarce. A geometric solution to increase, at a very low cost, the region of

influence of the minority class consists in modifying the distance when comparing

a query example to a positive training sample. More specifically, we formally show

in this paper that the optimization of any (FN ,FP )-based performance measure,

which are well suited to deal with imbalanced scenarios, is facilitated by scaling

the distance to any positive by a coefficient γ ∈ [0, 1] leading to the expansion of

the Voronoi cells around the minority examples. An illustration is given in Fig. 1

(middle) which might be seen as a good compromise that results in the reduction

of FN while controlling the risk to increase FP . Note that our strategy boils down

to modifying the local density of the positive examples. For this reason, we claim

that it can be efficiently combined with SMOTE-based sampling methods whose

goal is complementary and consists in generating examples on the path linking two

(potentially far) positive neighbors. Our experiments will confirm this intuition.

This paper improves substantially on our previous work [22], both with increased

details and new algorithmic and experimental contributions: (i) we show an explicit

link between the proposed method, called γk−NN, and cost-sensitive learning, (ii)

we present a local version of our method that uses clustering to adapt the param-

eters to the different regions of the input space, and (iii) we rework and extend

the experimental study to incorporate new performance measures and to give a

qualitative analysis on the well-known image dataset MNIST.

The rest of the paper is organized as follows. Section 2 is dedicated to the
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introduction of our notations and an overview of the main performance measures

that will be used to evaluate the compared methods. The related work is presented

in Section 3. Section 4 is devoted to the presentation of our method γk−NN. This

section includes a theoretical analysis of our method as well as a presentation of

a local extension aiming at capturing local specificities of the feature space. We

finally establish a link between γk−NN and cost-sensitive learning. The last part

of this paper is dedicated to an extensive experimental study performed on 28

imbalanced datasets (see Section 5). In this comparative analysis, we give evidence

of the complementarity of our method with sampling strategies. We finally conclude

in Section 6.

2. Notations and Evaluation Measures

We consider a training sample S = {(xi, yi), i = 1, ...,m} of size m, drawn from an

unknown joint distribution Z = X × Y, where X = Rp is the feature space and

Y = {−1, 1} is the set of labels. Let us assume that S = S+∪S− with m+ positives

∈ S+ and m− negatives ∈ S− where m = m+ +m−.

Learning from imbalanced datasets requires to optimize appropriate measures

that take into account the scarcity of positive examples. Several of them rely on

the following two quantities: the Recall (also called True Positive Rate (TPR)

or sensitivity) which measures the capacity of the model to recall/detect positive

examples, and the Precision (also called Positive Prediction Value (PPV )) which

is the confidence in the prediction of a positive label. They are defined as follows:

Recall =
TP

TP + FN
and Precision =

TP

TP + FP
,

where FP (resp. FN) is the number of false positives (resp. negatives) and TP is

the number of true positives. Since one can arbitrarily improve the Precision if there

is no constraint on the Recall (and vice-versa), they are usually combined into a

single measure.

For instance, the F-measure [23] (or Fβ score), which is widely used in fraud and

anomaly detection [24], is defined as the harmonic mean of the Recall and Precision:

Fβ = (1 + β2)
Precision× Recall

β2 × Precision + Recall
,

where β is set such that the Recall is considered β times as important as the

Precision. Note that F1 (i.e. β = 1) considers the Precision and Recall equally.

The G-measure (G1) can also be used for imbalanced data classification [25]. Unlike

F1, it rather considers the geometric mean of Precision and Recall:

G1 =
√

Precision× Recall.

While Fβ and G1 consider both Recall and Precision, the G-mean (GM) [26] rather

makes use of the Recall (or TPR) and the False Negative Rate (TNR) as follows:

GM =
√
TPR× TNR =

√
TP

TP + FN
× TN

TN + FP
.
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In other words, it computes the geometric mean of TPR and TNR. Thus, it gives

a higher importance to the negative class, compared to the previous measures.

Without being exhaustive, a last performance measure that can be used in an

imbalanced setting is the Balanced Accuracy (BA) [4] which also relies on TPR and

TNR and is defined as the mean accuracy of the two classes:

BA = (TPR+ TNR)/2

In the experimental section of this paper, we will resort to these widely used mea-

sures to asses the efficiency of our proposed method to overcome the problem of

scarcity of positive samples.

3. Related Work

In this section, we present the main strategies that have been proposed in the

literature to address the problem of learning from imbalanced datasets. We first

present methods specifically dedicated to enhance a k−NN classifier. Then, we give

an overview of the main sampling strategies used to balance the two classes. All

these methods will be used in the experimental comparison in Section 5.

3.1. Distance-based Methods

Several strategies have been devised to improve k−NN. The oldest method is cer-

tainly the one presented in [27] which consists in associating to each neighbor a

voting weight that is inversely proportional to its distance to a query point x. The

assigned label ŷ of x is defined as:

ŷ =
∑

xi∈kNN(x)

yi ×
1

d(x,xi)
,

where kNN(x) stands for the set of the k nearest neighbors of x. A more refined ver-

sion consists in taking into account both the distances to the nearest neighbors and

the distribution of the features according to the class p(xi | yi) [28]. Despite these

modifications in the decision rule, the sparsity of the positives remains problematic

and it is possible that no positives fall in the neighborhood of a new query x. To

tackle this issue, a variant of k−NN, called kPNN [29], is to consider the region

of the space around a new query x which contains exactly k positive examples. By

doing so, the authors are able to use the density of the positives to estimate the

probability of belonging in the minority class.

A more recent version has been shown to perform better than the two previous

approaches: kRNN [30]. If the idea remains similar (i.e. estimating the local sparsity

of minority examples around a new query), the posterior probability of belonging

in the minority class is adjusted so that it considers both the local and global

disequilibrium for the estimation. In [31], the authors use both the label and the

distance to the neighbors (xi, yi) to define a scaled metric d′ from the Euclidean
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distance d, as follows:

d′(x,xi) =
(mi

m

)1/p
d(x,xi),

where mi is the number of examples in the class yi. As we will see later, this method

falls in the same family of strategies as our contribution, aiming at scaling the

distance to the examples according to their label. However, three main differences

explain the superiority of our method, observed in the experiments: (i) kRNN fixes

d′ in advance while we will automatically adapt the scaling factor to optimize the

considered performance measure; (ii) because of (i), d′ needs to take into account

the dimension p of the feature space (and so will tend to d as p grows) while our

method captures the intrinsic dimension of the space by selecting the best weight;

(iii) d′ is useless when combined with sampling strategies (indeed, mi
m would tend

to be uniform) while our method will allow us to scale differently the distance to

the original positive examples and the ones artificially generated.

Another way to assign weights to each class, which is close to the sampling meth-

ods presented in the next section, is to duplicate the positive examples according

to the Imbalance Ratio IR = m−/m+. Thus, it can be seen as a uniform over-

sampling technique, where all positives are replicated the same number of times.

However, note that this method requires to work with k > 1.

A last family of methods that try to improve k−NN is related to metric learn-

ing [20, 21]. LMNN [18] or ITML [19] are two famous examples which optimize

under constraints a Mahalanobis distance dM(x,xi) =
√

(x− xi)>M(x− xi) pa-

rameterized by a positive semi-definite (PSD) matrix M. Such methods seek a linear

projection of the data in a latent space where the Euclidean distance is applied. As

we will see in the following, our scaling method is a special case of metric learning

which looks for a diagonal matrix (but applied only when comparing a query to

a positive example) and which behaves well whatever the considered performance

measure.

3.2. Sampling Strategies

One way to overcome the issues induced by the lack of positive examples is to com-

pensate artificially the imbalance between the two classes. Sampling strategies [9]

have been proven to be very efficient to address this problem. In the following, we

overview the most used methods in the literature.

The Synthetic Minority Over-sampling Technique [11] (SMOTE) over-samples

a dataset by creating new synthetic positive data. For each minority example x,

it randomly selects one of its k nearest positive neighbors and then creates a new

random positive point on the line between this neighbor and x. This is done until

some desired ratio is reached.

Borderline-SMOTE [32] is an improvement of the SMOTE algorithm. While

the latter generates synthetic points from all positive points, BorderLine-SMOTE

only focuses on those having more negatives than positives in their neighborhood.
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More precisely, new samples are generated if the number n of negatives in the k-

neighborhood is such that k/2 ≤ n ≤ k.

The Adaptive Synthetic [33] (ADASYN) sampling approach is also inspired from

SMOTE. By using a weighted distribution, it gives more importance to classes that

are more difficult to classify, i.e. where positives are surrounded by many negatives,

and thus generates more synthetic data for these classes.

Two other strategies combine an over-sampling step with an under-sampling

procedure. The first one uses the Edited Nearest Neighbors [34] (ENN) algorithm

on the top of SMOTE. After SMOTE has generated data, the ENN algorithm

removes samples that are misclassified by their k nearest neighbors. The second one

combines SMOTE with Tomek’s link [10]. The latter is a pair of points (xi,xj) from

different classes for which there is no other point xk verifying d(xi,xk) ≤ d(xi,xj)

or d(xk,xj) ≤ d(xi,xj). In other words, xi is the nearest neighbor of xj and vice-

versa. If so, one removes the example of (xi,xj) that belongs to the majority class.

Note that both strategies tend to eliminate the overlapping between classes.

Interestingly, we can note that all the previous sampling methods try to overcome

the problem of learning from imbalanced data by resorting to the notion of k-

neighborhood. This is justified by the fact that k−NN has been shown to be a good

estimate of the density at a given point in the feature space.

In our contribution, we also leverage k−NN but with a different approach. In-

stead of generating (many) new examples (which would have a negative impact

from a complexity perspective), we locally modify the density around the positive

points. We achieve this by rescaling the distance between a test sample and the pos-

itive training examples. We show that such a strategy can be efficiently combined

with sampling methods, whose goal is complementary, by potentially generating

new examples in regions of the space where the minority class is not present.

4. Proposed Approach

In this section, we present our γk−NN method which works by scaling the distance

between a query point and positive training examples by a factor.

4.1. An Adjusted k−NN algorithm

Statistically, when learning from imbalanced data, a new query x has more chance

to be close to a negative example due to the rarity of positives in the training

set, even around the mode of the positive distribution. We have seen two families of

approaches that can be used to counteract this effect: (i) creating new synthetic pos-

itive examples, and (ii) changing the distance according to the class. The approach

we propose falls into the second category.

We suggest to modify how the distance to the positive examples is computed,

in order to compensate for the imbalance in the dataset. We artificially bring a new

query x closer to any positive data point xi ∈ S+ in order to increase the effective

area of influence of positive examples. The new measure dγ that we propose is
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Fig. 2. Evolution of the decision boundary based on dγ , for a 1-NN classifier, on a 2D dataset
with one positive (resp. negative) instance represented by a blue cross (resp. red point). The value

of γ is given on each boundary (γ = 1 on the thick line).

defined using an underlying distance d (e.g., the Euclidean distance) as follows:

dγ(x,xi) =

{
d(x,xi) if xi ∈ S−,
γ · d(x,xi) if xi ∈ S+.

(1)

As we will tune the γ parameter, this new way to compute the similarity to a

positive example is close to a Mahalanobis-distance learning algorithm, looking for

a PSD matrix, as previously described. However, the matrix M is restricted here

to be γ2 · I, where I refers to the identity matrix. Moreover, while metric learning

typically works by optimizing a convex loss function under constraints, our γ is

simply tuned such as maximizing the non convex performance measure. Lastly, and

most importantly, it is applied only when comparing the query to positive examples.

As such, dγ is not a proper distance. However, this is what allows it to compensate

for the class imbalance. In the binary setting, there is no need to have a γ parameter

for the negative class, since only the relative distances are used. In the multi-class

setting with K classes, we would have to tune up to K − 1 values of γ.

Before formalizing the γk−NN algorithm that will leverage the distance dγ ,

we illustrate in Fig. 2, on 2D data, the decision boundary induced by a nearest

neighbor binary classifier that uses dγ . We consider an elementary dataset with

only two points, one positive and one negative. The case of γ = 1, which is a

traditional 1-NN is shown in a thick black line. Lowering the value of γ below 1

brings the decision boundary closer to the negative point, and eventually tends to

surround it very closely. Fig 3 shows, with more complex (toy) datasets, that γ

controls how much we want to push the boundary towards negative examples. Fig 3

(right) should be imagined as a zoomed-in boundary between the classes, where

one class is 20 times less represented. It shows that, due to sampling, the 1-NN

boundary wrongly causes regions of false negatives, while γk−NN is able to correct

the bias.

We can now present γk−NN (see Algorithm 1) that is parameterized by the γ

parameter. It has the same overall complexity as k−NN. The first step to classify
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Fig. 3. Behavior of the decision boundary according to the γ value for the 1-NN classifier on toy
datasets. Positive points are shown as blue crosses and negatives ones as red dots. The black line

represents the standard decision boundary for the 1-NN classifier, i.e. when γ = 1.

a query x is to find its k nearest negative neighbors and its k nearest positive

neighbors. Then, the distances to the positive neighbors are multiplied by γ, to

obtain dγ . These 2k neighbors are then ranked and the k closest ones are used for

classification (with a majority vote, as in k−NN). It should be noted that, although

dγ does not define a proper distance, we can still use any existing fast nearest

neighbor search algorithm, because the actual search is done only using the original

distance d (but twice, once for S+, once for S−).

Algorithm 1: Classification of a new example with γk−NN.

Input : a query x to be classified, a set of labeled samples S = S+ ∪ S−,
a number of neighbors k, a positive real value γ, a distance function d

Output: the predicted label of x

NN−,D− ← nn(k,x, S−) // nearest negative neighbors with their distances

NN+,D+ ← nn(k,x, S+) // nearest positive neighbors with their distances

D+ ← γ · D+

NN γ ← firstK
(
k, sortedMerge((NN−,D−), (NN+,D+))

)
y ← if

∣∣NN γ ∩NN+
∣∣ ≥ k

2 else // majority vote based on NN γ

return y

4.2. Theoretical analysis

In this section, we formally analyze what could be a good range of values for γ in our

γk−NN algorithm. To this aim, we study what impact γ has on the probability to

get a false positive (and false negative) at test time and explain why it is important

to choose γ < 1 when the imbalance in the data is significant. The following analysis

is made for k = 1 but note that the conclusion still holds for k > 1.

Proposition 1. (False Negative probability) Let dγ(x,x+) = γd(x,x+), ∀γ > 0,

be our modified distance used between a query x and any positive training example

x+, where d(x,x+) is some distance function. Let FNγ(z) be the probability for a

positive example z to be a false negative using Algorithm (1). The following result
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holds: if γ ≤ 1,

FNγ(z) ≤ FN(z)

Proof. (sketch of proof) Let ε be the distance from z to its nearest-neighbor Nz.

z is a false negative if Nz ∈ S− that is all positives x′ ∈ S+ are outside the sphere

S ε
γ

(z) centered at z of radius ε
γ . Therefore,

FNγ(z) =
∏

x′∈S+

(
1− P (x′ ∈ S ε

γ
(z))

)
,

=
(

1− P (x′ ∈ S ε
γ

(z))
)m+

(2)

while

FN(z) = (1− P (x′ ∈ Sε(z)))
m+ . (3)

Solving (2) ≤ (3) implies γ ≤ 1.

This result means that satisfying γ < 1 allows us to increase the decision bound-

ary around positive examples (as illustrated in Fig. 3), yielding a smaller risk to

get false negatives at test time. An interesting comment can be made from Eq.(2)

and (3) about their convergence. As m+ is supposed to be very small in imbalanced

datasets, the convergence of FN(z) towards 0 is pretty slow, while one can speed-up

this convergence with FNγ(z) by increasing the radius of the sphere S ε
γ

(z), that is

taking a small value for γ.

Proposition 2. (False Positive probability) Let FPγ(z) be the probability for a

negative example z to be a false positive using Algorithm (1). The following result

holds: if γ ≥ 1,

FPγ(z) ≤ FP (z)

Proof. (sketch of proof) Using the same idea as before, we get:

FPγ(z) =
∏

x′∈S−

(1− P (x′ ∈ Sγε(z))) ,

= (1− P (x′ ∈ Sγε(z)))
m− (4)

while

FP (z) = (1− P (x′ ∈ Sε(z)))
m− . (5)

Solving (4) ≤ (5) implies γ ≥ 1.

As expected, this result suggests to take γ > 1 to increase the distance dγ(z,x+)

from a negative test sample z to any positive training example x+ and thus reduce

the risk to get a false positive. It is worth noticing that while the two conclusions

from Propositions 1 and 2 are contradictory, the convergence of FPγ(z) towards 0
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Table 1. Cost matrix for a binary classification task.

Predicted positive Predicted negative

Actual positive cTP cFN
Actual negative cFP cTN

is much faster than that of FNγ(z) because m− >> m+ in an imbalance scenario.

Therefore, fulfilling the requirement γ > 1 is much less important than satisfying

γ < 1. For this reason, we will impose our Algorithm (1) to take γ ∈ [0, 1].

4.3. Link with cost-sensitive learning

In this section, we show that it is possible to establish a link between the cost-

sensitive learning framework [35] and our algorithm γk−NN. The goal of cost-

sensitive learning is to assign different costs to each entry of the confusion matrix

as depicted in Table 1 for a binary setting where we will denote the 4 costs as cTP ,

cFN , cFP and cTN . Cost sensitive methods are widely used, including in imbalanced

scenarios, to give more importance (i.e. higher weights/costs) to the examples of

the positive/minority class. By doing so, a learned classifier will focus more on

decreasing the loss associated to the positive samples. We show here that, despite

not being learned by optimizing a loss function, γk−NN can still be seen in the lens

of cost-sensitive learning.

Let us assume that the correct predictions are not penalized, i.e. cTN = cTP = 0

and that cFP and cFN are such that cFP + cFN = 1 (without loss of generality, as

only their relative values matter here). Let x− (resp. x+) be the nearest negative

(resp. positive) neighbor of an example x. Suppose that we have a model η(x) =

P(y = 1 | x) that gives the probability for x to be positive. Then the positive

label will be assigned to x if η(x) > 1/2, without considering the costs of miss-

classification. Taking these latter into account changes the classification rule. Indeed,

to minimize the cost-sensitive risk, an example x must be predicted positive if:

cFP P(y = 0 | x) ≤ cFN P(y = 1 | x),

⇔ cFP (1− η(x)) ≤ cFN η(x),

⇔ η(x) ≥ cFP .

On the other hand, our algorithm γk−NN classifies an example x as positive

if d(x,x−) > γd(x,x+). Given this classification rule, we can show that γk−NN

resorts to an approximation η̂(x) of η(x) for a given weighted problem, as follows:

d(x,x−) > γd(x,x+),

⇔ d(x,x−)(1 + γ) > γ(d(x,x+) + d(x,x−)),

⇔ d(x,x−)

d(x,x+) + d(x,x−)
>

γ

1 + γ
.

Setting cFP =
γ

γ + 1
(and therefore cFN = 1 − γ

γ + 1
=

1

γ + 1
) and η̂(x) =
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d(x,x−)

d(x,x+) + d(x,x−)
finishes to establish the link between γk−NN and cost-sensitive

learning. Note that if γ = 1 then cFP = cFN = 1
2 implying that we retrieve a

standard k−NN classifier which treats positive and negative samples equally without

cost sensitivity.

The reader interested in cost-sensitive k−NN classifiers can refer to [36,37].

4.4. Towards a local approach of γk−NN

In what have been presented so far, we consider a single γ for the whole input space.

While this has the advantage of having a single parameter to tune, it removes the

ability to capture non-stationary class imbalance. Indeed, it is possible that a γ

value is optimal in one part of the space but not in another.

We thus propose a non-stationary version of our algorithm, called local-γk−NN.

Conceptually, we could have a γx for every position x in the space. However, such an

over parameterized model would loose the simplicity of the proposed approach and

increase the risk of overfitting. To deal with these two issues, we rather partition

the input space into q ∈ N? sub-spaces, {Cj}qj=1, using a clustering algorithm (e.g.,

k-means). Then a value γj , for all j = 1, ..., q is tuned according to the performance

measure of interest and using only the available data in the subspace Cj . To classify

a test query that falls in cluster j we use γk−NN (with γj) in this cluster. We will

show in the experimental Section 5.4 two possible variants of this local approach.

5. Experiments

This part is devoted to an extensive experimental evaluation of γk−NN on public

datasets with comparisons to classic distance-based methods and state-of-the-art

sampling strategies able to deal with imbalanced data. All the results are reported

for nearest neighbor classification with k = 1 and 3 by considering the four different

evaluation measures introduced in Section 2 (F1, G1, GM and BA). We also con-

duct, in Section 5.3, a qualitative analysis on the behavior of our approach on the

famous MNIST image dataset [38]. Finally, we conclude our experimental study by

an evaluation of the performance of the local version of γk−NN (in Section 5.4).

5.1. Experimental setup

For these experiments, we use 28 public datasets from the well-known UCIa and

KEELb repositories. The main properties of these datasets are summarized in Ta-

ble 2, including the imbalance ratio IR defined as: IR= m−/m+.

ahttps://archive.ics.uci.edu/ml/datasets.html

bhttps://sci2s.ugr.es/keel/datasets.php
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Table 2. Information about the studied public datasets sorted by imbalance ratio IR. The target
column refers to the label chosen as the minority class (i.e. positive examples) in the dataset. The

short name of each dataset is given first and will be used, for the sake of readability, in some graphs

of this study. (*) The target for Yeast is ME2 vs MIT,ME3,EXC,VAC,ERL.

datasets size dim target IR datasets size dim target IR

bal - Balance 625 4 L 1.2 pag - Pageblocks 5472 10 2,3,4,5 8.8
aut - Autompg 392 7 2,3 1.7 sat - Satimage 6435 36 4 9.3

ion - Ionosphere 351 34 b 1.8 yea - Yeast-0-5-6-7-9vs4 528 8 (*) 9.35

pim - Pima 768 8 positive 1.87 lib - Libras 360 90 1 14
gla - Glass 214 9 1 2.1 y17 - Yeast-1vs7 459 7 VAC vs NUC 14.3

ger - German 1000 23 2 2.3 arr - Arrhythmia 452 278 6 17

ye1 - Yeast1 1484 8 NUC 2.46 sol - Solar-flare-M0 1389 32 M0 19
hab - Haberman 306 3 positive 2.78 oil - Oil 937 49 minority 22

ve3 - Vehicle3 846 18 Class 3 Opel 2.99 ye4 - Yeast4 1484 8 ME2 28.1

hay - Hayes 132 4 3 3.4 wi4 - Redwinequality4 1599 11 4 29.2
seg - Segmentation 2310 19 WINDOW 6 ye5 - Yeast5 1484 8 ME1 32.73

ab8 - Abalone8 4177 10 8 6.4 ye6 - Yeast6 1484 8 EXC 41.4
ye3 - Yeast3 1484 8 ME3 8.1 a17 - Abalone17 4177 10 17 71

ec3 - Ecoli3 336 7 imU 8.6 a20 - Abalone20 4177 10 20 159.7

All the datasets are normalized using a min-max normalization such that each

feature lies in the range [−1, 1]. We randomly draw 80%-20% splits of the data to

generate the training and test sets respectively. Hyperparameters are tuned with a

10-fold cross-validation over the training set. We repeat the process over 5 runs and

average the results in terms of the four performance measures. In a first series of

experiments, we compare our method γk−NN to 6 other distance-based baselines:

• the classic k−Nearest Neighbor algorithm (k−NN),

• the weighted version of k−NN using the inverse distance as a weight to

predict the label (wk−NN) [27],

• the class weighted version of k−NN (cwk−NN) [31],

• the k−NN version where each positive is duplicated according to the IR of

the dataset (dupk−NN),

• kRNN where the sparsity of minority examples is taken into account [30]

by modifying the way the posterior probability of belonging to the positive

class is computed.

• the metric learning method LMNN [18].

The hyperparameter µ of LMNN, weighting the impact of impostor constraints

(see [18] for more details), is tuned in the range [0, 1] using a step of 0.1. Our γ

parameter is tuned in the range [0, 1]c using a step of 0.1. For kRNN, we use the

parameters values as described in [30].

In a second series of experiments, we compare our method to five oversam-

pling strategies described in Section 3.2: SMOTE, Borderline-SMOTE, ADASYN,

SMOTE with ENN, SMOTE with Tomek’s link. The number of generated positive

cWe experimentally noticed that using a larger range for γ leads in fact to a potential decrease
of performances due to overfitting phenomena. This behavior is actually in line with the analysis
provided in Section 4.2.
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examples is tuned over the set of ratios
m+

m−
∈ {0.1, 0.2, ..., 0.9, 1.0} and such that

the new ratio is greater than the original one before sampling. The other param-

eters of these methods are the default ones used by the package ImbalancedLearn

of Scikit-learn. We report the performance of the best oversampler that we denote

as OS?. In order to evaluate how both strategies are complementary, we also com-

bine γk−NN with oversamplers, and use the notation (OS+γk−NN)? to indicate

the best combinaison obtained by a 10-cross validation. In this latter scenario, we

propose to learn a different γ value to be used with the synthetic positives. Indeed,

some of the synthetic examples may be generated in some true negative areas and,

in this situation, it might be more appropriate to decrease their influence. The γ

parameter for these examples is tuned in the range [0, 2] using a step of 0.1. Note

the upper bound of the range is now set to 2. This allows γk−NN to adapt to the

different sampling strategies of the oversamplers and enables the possibility to move

synthetic positive examples away from dense regions of negatives by selecting γ > 1.

5.2. Analysis of the results

The results on the public datasets using the six baselines are provided in Tables 4,5,6

and 7 for the four different performance measures F1, BA, GM and G1 respectively.

These tables report the complete results when k = 1 (in k−NN) and provide only

the mean results over the 28 datasets for k = 3, for the sake of concision and because

the behavior for this latter value is similar. Overall, our γk−NN approach performs

much better than its competitors by achieving an improvement of 0.7 to 5 points

on average, compared to the other state-of-the-art algorithms when k = 1. It is

worth noticing that the results are even better when k = 3. But the certainly most

striking result comes from the capacity of γk−NN associated with the Balanced Ac-

curacy (BA) in Table 5 and G-mean (GM) in Table 6 to address large imbalanced

learning tasks. While the other methods struggle to get good results, γk−NN with

BA and GM gets the best performance 19 and 20 times respectively over the 22

largest imbalanced datasets (from Yeast1 to Abalone20). Even the metric learn-

ing algorithm LMNN fails to be competitive while it optimizes a representation of

the data specifically dedicated to deal with nearest neighbor classification. Indeed,

LMNN suffers from the lack of positive data to learn an efficient projection when

dealing with highly imbalanced tasks. On the other hand, γk−NN does not seem

particularly sensitive to the imbalance ratio.

The second series of experiments focuses on the use of sampling strategies and

the potential interest of combining γk−NN with a synthetic generation of additional

positive examples. Fig. 4 compactly summarizes, for the four measures of interest

and for both k = 1 (on the left) and k = 3 (on the right), the impact of sampling

strategies. Two main comments can be made from these results. First, γk−NN is

complementary to the oversamplers. Indeed, for both k = 1 and k = 3 and for 3

out of 4 measures (G1 excluded), using γk−NN in addition with a sampler leads
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Fig. 4. Comparison of k−NN, γk−NN, the best oversampler among SMOTE, BorderSmote,

SMOTE+ENN, SMOTE+Tomek’s links and ADASYN, and the best coupling oversampler +

γk−NN, in terms of mean of F-measure (F1), Balanced Accuracy (BA), Geometric Mean (GM)
and G-measure (G1) over all the datasets, for k = 1 (left) and k = 3 (right).

to better results and gives evidence of the fact that γk−NN and oversamplers do

not work the same way, focusing on different subparts of the feature space. While

γk−NN aims at expanding the decision boundaries in favor of the positives in the

neighborhood of the test query, oversamplers rather tend to fill in the empty parts

of the space by generating synthetic positive examples. Second, γk−NN (red bars)

alone is shown to be very competitive while benefiting from its simplicity. Indeed, we

remind the reader that the performance of OS? (resp. (OS+γk−NN)?) are obtained

from the costly selection of the best oversampler (resp. γk−NN + oversampler) for

each dataset. Therefore, the green and black bars in Fig. 4 give an optimistic usage

of an oversampling strategy because it is generated from the average obtained over a

large set of oversamplers (SMOTE, Borderline-SMOTE, ADASYN, SMOTE+ ENN

and SMOTE with Tomek’s link) that can be seen as an additional hyperparameter.

On the other hand, in γk−NN, only one parameter (γ) is required to be tuned.

Fig. 5 illustrates, for the F1 and GM measures and k = 1, a dataset-wise view of

the advantage of combining γk−NN with an oversampler compared to a standard

k−NN. A point (representing one of the 28 datasets) below the line y = x means

that k−NN is outperformed. Moreover, a move of a point (illustrated by a right

arrow) from left to right illustrates that the joint approach leads to better results.

We can see that even for the least favorable measure (i.e. F1 on the left), most of the

datasets are below the line and benefit from γk−NN associated to an oversampler.

In Fig 6 (left), we illustrate how having two γ parameters (γ on reals and γ on

synthetics) gives the flexibility to independently control the influence of the actual

and artificial positives respectively. The other figures (center and right) represent

two examples of heatmaps of the F-measure (note that the trend is the same for

the other 3 measures). We can note that while the γ parameter tuned for the real

positives tends to be smaller than 1 (according to the analysis of Section 4.2), the γ

parameter required to deal with the synthetic positives is sometimes smaller (right),

sometimes greater than 1 (center), depending on the underlying density and the pe-
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Fig. 5. Comparison of k−NN with (i) γk−NN (points in blue) and (ii) γk−NN coupled with the

best sampling strategy (points in orange) for each dataset, in terms of F-measure (left) and Geo-

metric Mean (right) and for k = 1. Points below the line y = x means that k−NN is outperformed.
A move from left to right illustrates that the joint approach is better.

Table 3. Comparison of γk−NN and k−NN on MNIST for k = 3.

F1 BA GM G1

k−NN 97.18 98.31 98.30 97.19
γk−NN 97.21 98.97 98.97 97.21

culiarity of the feature space.

Recall that Propositions 1 and 2 in Section 4.2 tell us that selecting a γ parameter

smaller than 1 for the real positives should tend to reduce the false negative (FN)

rate while still optimizing the performance measure. To illustrate our theoretical

study, we plot in Fig. 7 the percentage of FN generated by the 7 compared methods.

As expected, we can note that whatever the performance measure and the value of

k (k = 1 on the left and k = 3 on the right), the number of FN is much smaller

than that of the competitors explaining why γk−NN gets the best results.

5.3. A qualitative analysis on the MNIST dataset

In order to visualize the qualitative impact of γk−NN, we conduct in this section

some additional experiments on the MNIST dataset. To generate a minority class,

we build 10 datasets MNISTi (one for each digit, i = 0, ..., 9) from the original one

by considering the label i as the minority class and all the other classes representing

the remaining digits as the majority class.

As previously done, a 10-fold CV is performed to find the optimal value γ. The

mean results of the comparison of γk−NN with k−NN are reported in Table 3
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Fig. 6. Left: Illustration on a toy dataset of the effect of varying γ for the generated positive points

(in grey) while keeping a fixed γ = 0.4 for the real positives. Center and Right: Two examples of
heatmap for the F-Measure that show the pair of γ (on real and synthetic positives) corresponding

to the best joint approach (OS+ γk−NN)∗ on Abalone8 (center) and German (right).
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Fig. 7. Percentage of false negatives (FN) generated by the 7 compared methods w.r.t. the four

performance measures with 1−NN (left) and 3−NN (right).

where k = 3. We can see that whatever the performance measure, γk−NN allows

us to outperform k−NN. As expected, the gain on this well-known MNIST dataset

is not significant due to the already very high accuracy reached by the standard

k−NN. However, the main objective here is elsewhere. We aim at showing the

quality of both the space and the neighborhoods induced by γk−NN. To illustrate

this purpose and visualize how using dγ (as defined in Eq.(1)) bends the feature

space, we leverage t-SNE to embed the MNISTi points in 2D. Note that even if dγ
is not an actual distance (the symmetry is not satisfied), it can still be used with

t-SNE that only embeds points while preserving relative pair-wise dissimilarities.

Following the definition of dγ , we scale the Euclidean distance when the second

point in the pair is a positive one. Fig. 8 compares, on the MNIST2 dataset, the

output of t-SNE when using d (left) and dγ (right). The analysis of this embedding

shows that dγ is able to gather minority examples together in a denser cluster

while the Euclidean distance leads to a space where the positive samples are more
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Fig. 8. Visualization on MNIST2 of the influence of the Euclidean distance d (left) and dγ (right)
with t-SNE. The red (resp. blue) points correspond to negatives (resp. positives). The blue areas

represent the subparts of the space leading to a positive classification by a 3−NN.
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0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

0 5 10 15 20 25

0

5

10

15

20

25

Fig. 9. First three columns: 3 nearest neighbors using k−NN; fourth column: the test query; last
three figures: 3 nearest neighbors using γk−NN.

scattered, some being in the middle of negative regions. This impact of γk−NN on

the decision boundaries, that we see with this t-SNE experiment, is also illustrated

in Fig. 9 which shows some examples for which, the γk−NN predictions are different

from that of k−NN according to their 3-nearest neighbors (on the original dataset).

5.4. On local-γk−NN using clustering

We now evaluate our local algorithm local-γk−NN (as presented in Section 4.4),

which partitions the input space into q clusters (C1, C2, ..., Cq) and uses a parameter

γj for each cluster j. The partitioning is performed using k-means, run on the

training set. Note that we consider two ways of obtaining the γj values. The first

version (V1) consists in applying the 10 fold cross-validation (CV) procedure in

each cluster Cj to tune γj . At test time, a new point x′ is first assigned to the
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nearest cluster Ck based on the closest centroid using the Euclidean distance, and

the corresponding γk value is used to scale the distances to the positives.

We propose a second version (V2) to compensate for the fact that V1 is at risk

of generating very different values of γ for two neighboring clusters. While the test

decision is similar to V1, the γj values are obtained differently, by computing several

clusterings. In V2, the 10 fold CV also includes the clustering, so 10 additional

partitionings are performed. Each training point x will thus fall in 9 clusters (in the

9 different clusterings for which the point is not in the validation fold). Each point

thus has 9 “best” γ values that we average to get a single value γx for every single

point. In the end, γj is computed as
1

|Cj |
∑

x∈Cj γx, i.e. the average γ value of the

training points falling into cluster j.

The results are provided for the 4 performance measures in Fig. 10, 11, 12 and

13. Despite an inherent increase of the time complexity, it is worth noting that V2

is better than the original γk−NN (on average over the 28 datasets), while V1 does

not lead to improvements probably due to overfitting phenomena. Note also that

in a huge majority of the datasets (around 90%), the V2 version of local-γk−NN

equals or outperforms γk−NN.

6. Conclusion

In this paper, we have proposed a new approach, γk−NN, that addresses the prob-

lem of learning from imbalanced datasets. It is based on the k−NN algorithm but it

modifies the distance to the positive examples by expanding the decision boundaries

around these minority samples. It has been shown to outperform its competitors

in terms of several performance measures. Furthermore, we gave evidence of the

complementarity of γk−NN with oversampling strategies. Our algorithm, despite

its simplicity, is highly effective and its local version local-γk−NN has shown to be

even more efficient by taking the spatial specificity of the distributions into account.

Two main lines of research deserve future investigations. First, we plan to extend

the idea of the local variant of γk−NN by proposing a multi-view learning approach,

where the different results of γk−NN obtained with different subsets of features (the

different views) would be combined in some way. Second, we can note that tuning γ

is equivalent to building a diagonal matrix (with γ2 in the diagonal) and applying a

Mahalanobis distance only between a query and a positive example. This comment

opens the door to a new family of metric learning algorithms dedicated to optimizing

a PSD matrix under (FP, FN)-based constraints that could leverage recent metric

learning approaches for imbalanced data [39].
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Table 4. Results for k = 1 with F1 as performance measure over 5 runs. The standard deviation is indicated after the ±
sign and the best results on each dataset is indicated in bold. Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN

Balance 84.5±2.2 84.5±2.2 84.5±2.2 84.4±1.7 88.2±1.2 84.1±4.6 84.4±1.7
Autompg 76.7±7.4 76.7±7.4 76.7±7.4 76.2±6.2 82.5±2.8 77.5±3.1 81.8±3.0
Ionosphere 80.1±4.2 80.1±4.2 80.1±4.2 83.3±3.0 0.83±3.0 81.3±3.3 89.0±4.5

Pima 55.8±4.7 55.8±4.7 55.8±4.7 61.1±3.7 62.3±3.9 55.9±2.8 61.2±5.4
Glass 70.4±8.7 70.4±8.7 70.4±8.7 73.2±6.4 76.2±8.6 68.9±7.7 70.5±7.5
German 37.9±5.0 37.9±5.0 37.9±5.0 41.1±3.6 43.7±4.0 41.0±3.8 47.7±1.9

Yeast1 52.5±2.6 52.5±2.6 52.5±2.6 53.3±3.6 52.5±2.1 51.3±3.7 54.8±3.8
Haberman 23.4±6.7 23.4±6.7 23.4±6.7 35.5±10 33.2±7.6 24.6±6.9 49.2±4.4
Vehicle3 51.0±3.4 51.0±3.4 51.0±3.4 51.2±3.7 56.1±3.3 54.7±3.6 55.1±3.4

Hayes 65.9±10 65.9±10 65.9±10 87.5±4.9 76.6±8.3 76.8±14 78.7±10
Segmentation 88.7±2.9 88.7±2.9 88.7±2.9 88.9±2.8 87.2±1.6 91.2±2.3 88.7±2.9
Abalone8 21.4±1.3 21.4±1.3 21.4±1.3 31.3±0.9 23.8±1.1 21.9±1.7 31.1±2.0
Yeast3 65.1±2.5 65.1±2.5 65.1±2.5 63.0±2.6 69.4±1.2 63.6±1.0 65.9±2.3
Ecoli3 52.9±9.7 52.9±9.7 52.9±9.7 54.1±7.8 61.2±5.8 57.2±11 53.9±7.0
Pageblocks 81.6±2.6 81.6±2.6 81.6±2.6 81.1±2.4 81.3±4.4 81.5±3.2 81.2±2.2

Satimage 67.6±3.6 67.6±3.6 67.6±3.6 68.0±3.4 68.8±2.7 69.0±4.5 67.6±3.6
Yeast-0-5-6-7-9vs4 40.9±11 40.9±11 40.9±11 49.7±4.1 51.9±7.3 45.5±15 53.4±8.3
Libras 78.9±8.7 78.9±8.7 78.9±8.7 78.9±8.7 73.7±6.0 78.8±5.4 89.1±8.1

Yeast-1vs7 48.4±6.0 48.4±6.0 48.4±6.0 23.8±5.3 49.1±8.8 40.4±16.6 47.2±5.0
Arrythmia 16.1±20 16.1±20 16.1±20 15.6±20 15.6±20 20.2±21 8.9±12
Solar-flare-M0 15.6±5.6 15.6±5.6 15.6±5.6 18.4±1.9 21.4±6.3 15.3±10 18.6±2.1

Oil 53.5±11.2 53.5±11 53.5±11 57.2±9.7 55.5±5.2 61.3±12 58.3±12
Yeast4 30.6±11.3 30.6±11 30.6±11 29.2±1.9 41.4±4.0 32.4±12 39.0±8.4
Redwinequality4 10.4±5.7 10.4±5.7 10.4±5.7 12.4±2.6 12.9±7.0 12.0±6.9 13.2±5.6

Yeast5 70.0±11 70.0±11 70.0±11 56.4±8.2 62.6±8.3 70.1±12 67.0±9.8
Yeast6 49.4±13 49.4±13 49.4±13 26.2±2.3 49.9±8.6 47.1±19 46.1±10
Abalone17 14.8±9.7 14.8±9.7 14.8±9.7 10.5±4.0 16.3±6.9 14.3±6.7 17.3±9.4
Abalone20 00.0±0.0 00.0±0.0 00.0±00.0 05.2±3.5 06.6±6.7 00.0±0.0 03.6±4.7

Mean (k=1) 50.1 50.1 50.1 50.6 53.7 51.4 54.4

Mean (k=3) 49.3 54.0 50.0 52.2 53.2 51.9 55.8
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Fig. 10. Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of F-measure.
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Table 5. Results for k = 1 with BA as performance measure over 5 runs. The standard deviation is indicated after
the ± sign and the best results on each dataset is indicated in bold. Only the mean value when k = 3 is shown in the

last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN

Balance 85.4±2.1 85.4±2.1 85.4±2.1 84.2±1.9 88.9±1.2 85.5±4.1 84.2±1.9

autompg 81.6±6.1 81.6±6.1 81.6±6.1 81.1±5.2 86.4±2.6 81.9±2.6 86.0±2.9
Ionosphere 83.6±3.0 83.6±3.0 83.6±3.0 85.9±2.1 85.6±2.1 84.6±2.4 91.2±3.6

Pima 66.6±3.4 66.6±3.4 66.6±3.4 69.4±3.3 70.4±3.4 66.7±1.7 69.7±3.7

Glass 78.2±6.5 78.2±6.5 78.2±6.5 80.3±4.8 83.3±6.7 77.1±6.4 76.5±4.3
German 57.1±3.0 57.1±3.0 57.1±3.0 58.0±2.4 59.0±3.1 58.6±2.6 57.7±3.0

Yeast1 66.6±1.9 66.6±1.9 66.6±1.9 66.5±3.2 66.2±1.7 65.8±2.6 67.2±3.8

Haberman 49.8±5.4 49.8±5.4 49.8±5.4 52.7±9.0 53.3±6.2 50.4±5.4 61.1±4.7
Vehicle3 67.3±2.3 67.3±2.3 67.3±2.3 67.4±2.8 71.2±2.7 70.1±3.2 72.6±1.1

Hayes 75.7±6.0 75.7±6.0 75.7±6.0 90.7±4.6 82.4±5.4 82.9±8.7 91.9±4.2
Segmentation 93.5±2.2 93.5±2.2 93.5±2.2 95.1±2.1 95.5±0.9 94.9±1.5 96.2±0.9
Abalone8 54.5±0.7 54.5±0.7 54.5±0.7 61.3±0.8 55.7±0.7 54.9±0.9 62.6±1.8
Yeast3 79.4±2.9 79.4±2.9 79.4±2.9 85.5±2.4 83.4±2.8 80.4±2.5 85.7±2.9
Ecoli3 74.4±6.9 74.4±6.9 74.4±6.9 82.3±5.9 81.2±5.2 73.3±3.5 85.5±8.1

Pageblocks 88.5±1.5 88.5±1.5 88.5±1.5 91.4±2.1 90.4±2.3 88.7±1.9 92.9±1.3
Satimage 83.0±2.0 83.0±2.0 83.0±2.0 87.5±1.7 86.6±1.6 83.8±1.8 89.1±1.2
Yeast-0-5-6-7-9vs4 65.4±5.2 65.4±5.2 65.4±5.2 78.3±3.7 71.6±3.3 68.1±7.4 79.3±3.6

Libras 83.9±5.0 83.9±5.0 83.9±5.0 83.9±5.0 83.4±4.8 83.9±4.7 96.7±3.4
Yeast-1vs7 71.7±3.2 71.7±3.2 71.7±3.2 67.5±7.7 73.1±5.3 68.1±1.0 72.5±7.0
Arrythmia 57.5±16 57.5±16 57.5±16 56.8±17 57.2±16 59.7±16 54.7±6.5

Solar-flare-M0 55.1±2.5 55.1±2.5 55.1±2.5 65.1±1.8 58.2±2.9 55.0±4.3 67.3±4.2
Oil 76.6±8.8 76.6±8.8 76.6±8.8 80.7±6.2 83.4±4.0 79.3±9.7 84.6±4.4
Yeast4 64.9±8.3 64.9±8.3 64.9±8.3 78.7±2.1 77.5±3.5 66.6±8.5 79.3±3.5

Redwinequality4 53.5±2.7 53.5±2.7 53.5±2.7 58.7±3.9 55.7±4.4 54.3±3.2 69.2±5.8
Yeast5 87.2±7.4 87.2±7.4 87.2±7.4 91.4±5.5 90.9±5.7 86.2±6.7 95.1±2.8

Yeast6 77.7±10 77.7±10 77.7±10 84.9±9.3 85.7±9.3 79.0±14 79.2±7.0

Abalone17 56.8±4.9 56.8±4.9 56.8±4.9 64.2±7.3 63.2±6.8 57.7±3.7 67.0±4.2
Abalone20 49.7±0.1 49.7±0.1 49.7±0.1 58.8±6.9 55.5±6.4 49.7±0.1 68.8±11

Mean (k=1) 70.9 70.9 70.9 75.3 74.8 71.7 78.0

Mean (k=3) 69.6 75.4 69.9 75.5 74.2 71.7 79.7
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Fig. 11. Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of Balanced
Accuracy (BA).
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Table 6. Results for k = 1 with GM as performance measure over 5 runs. The standard deviation is indicated after the ±
sign and the best results on each dataset is indicated in bold. Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN

Balance 85.3±2.1 85.3±2.1 85.3±2.1 82.8±2.2 88.8±1.2 85.4±4.2 82.8±2.2
Autopmg 81.2±6.4 81.2±6.4 81.2±6.4 80.7±5.4 86.2±2.5 81.6±2.6 85.7±3.1
Ionosphere 82.1±3.5 82.1±3.5 82.1±3.5 84.9±2.3 84.7±2.3 84.1±2.2 91.1±3.7

Pima 65.0±3.8 65.0±3.8 65.0±3.8 69.2±3.2 70.3±3.4 65.1±2.3 68.9±3.9
Glass 77.3±7.2 77.3±7.2 77.3±7.2 79.7±5.3 82.6±7.2 76.1±6.8 77.7±6.0
German 52.4±4.2 52.4±4.2 52.4±4.2 55.4±3.0 57.6±3.4 55.1±3.2 57.0±3.0

Yeast1 64.8±1.8 64.8±1.8 64.8±1.8 66.3±3.1 65.6±1.7 63.8±2.7 66.8±4.2
Haberman 39.7±6.4 39.7±6.4 39.7±6.4 51.4±9.8 49.6±6.8 40.9±5.9 55.6±7.9
Vehicle3 65.3±3.1 65.3±3.1 65.3±3.1 66.6±3.1 70.5±3.2 68.4±4.1 72.4±1.6

Hayes 71.8±8.6 71.8±8.6 71.8±8.6 90.2±5.1 80.6±6.6 80.3±11.9 91.5±4.6
Segmentation 93.3±2.3 93.3±2.3 93.3±2.3 95.0±2.2 95.5±0.9 94.9±1.5 96.2±0.9
Abalone8 43.1±1.6 43.1±1.6 43.1±1.6 59.6±0.9 47.2±1.6 43.6±2.1 63.3±2.2
Yeast3 77.4±3.9 77.4±3.9 77.4±3.9 85.2±2.9 82.3±3.6 78.9±3.4 85.3±3.5
Ecoli3 71.0±9.0 71.0±9.0 71.0±9.0 81.9±6.5 79.9±6.1 73.2±9.7 85.1±8.5
Pageblocks 87.9±1.6 87.9±1.6 87.9±1.6 91.2±2.2 90.1±2.5 88.1±2.0 92.9±1.3

Satimage 81.9±2.3 81.9±2.3 81.9±2.3 87.3±1.8 86.2±1.7 83.2±2.7 89.0±1.2
Yeast-0-5-6-7-9vs4 56.9±9.2 56.9±9.2 56.9±9.2 77.5±4.4 67.1±4.7 58.9±14.2 78.5±4.2
Libras 82.1±6.0 82.1±6.0 82.1±6.0 82.1±6.0 81.8±5.7 82.0±5.8 96.6±3.6

Yeast-1vs7 67.0±5.0 67.0±5.0 67.0±5.0 65.8±9.4 69.0±7.5 59.8±16.5 68.4±10.5
Arrythmia 29.3±36.7 29.3±36.7 29.3±36.7 29.2±36.6 29.2±36.6 37.9±34.1 54.3±8.4
Solar-flare-M0 36.5±6.1 36.5±6.1 36.5±6.1 63.9±1.9 43.5±5.9 36.3±8.6 68.2±4.3

Oil 72.4±12.4 72.4±12.4 72.4±12.4 78.6±7.9 82.3±5.0 75.8±12.7 80.3±2.2
Yeast4 54.7±13.5 54.7±13.5 54.7±13.5 78.1±2.4 75.3±4.4 57.6±14.1 78.2±4.3
Redwinequality4 26.3±14.0 26.3±14.0 26.3±14.0 50.1±7.1 35.1±17.9 28.8±15.4 69.5±6.6

Yeast5 86.0±8.4 86.0±8.4 86.0±8.4 91.1±6.0 90.4±6.2 85.0±7.3 95.1±2.8
Yeast6 73.7±13.7 73.7±13.7 73.7±13.7 83.7±11.1 84.1±11.2 73.7±21.1 84.8±6.2
Abalone17 36.8±11.3 36.8±11.3 36.8±11.3 56.9±11.2 52.4±12.1 39.4±9.4 68.2±6.4
Abalone20 00.0±0.0 00.0±0.0 00.0±0.0 45.4±11.8 27.6±23.4 00.0±0.0 66.3±12.6

Mean (k=1) 62.9 62.9 62.9 72.5 69.8 64.2 77.5

Mean (k=3) 58.4 71.6 59.1 70.71 67.6 61.7 78.9
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Fig. 12. Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of Geometric
Mean (GM).
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Table 7. Results for k = 1 with G1 as performance measure over 5 runs. The standard deviation is indicated after the ±
sign and the best results on each dataset is indicated in bold. Only the mean value when k = 3 is shown in the last line.

datasets k−NN dupk−NN wk−NN cwk−NN kRNN LMNN γk−NN

Balance 84.5±2.2 84.5±2.2 84.5±2.2 85.4±1.5 88.4±1.2 84.2±4.6 85.4±1.5
Autopmg 76.9±7.4 76.9±7.4 76.9±7.4 76.4±6.3 82.9±2.9 77.7±3.1 82.3±3.2
Ionosphere 81.4±3.9 81.4±3.9 81.4±3.9 84.2±3.0 83.8±2.9 82.0±3.1 89.2±4.3

Pima 56.1±4.6 56.1±4.6 56.1±4.6 61.3±3.6 62.6±3.8 56.1±2.6 61.8±4.9
Glass 71.0±8.2 71.0±8.2 71.0±8.2 73.8±5.9 77.4±7.9 69.6±7.6 68.5±5.0
German 38.1±5.0 38.1±5.0 38.1±5.0 41.1±3.6 43.8±4.0 41.1±3.8 55.1±1.1

Yeast1 52.6±2.6 52.6±2.6 52.6±2.6 53.8±3.5 52.9±2.0 51.4±3.6 56.7±2.4
Haberman 23.8±7.0 23.8±7.0 23.8±7.0 36.0±10.3 33.3±7.6 25.1±7.4 51.4±4.9
Vehicle3 51.1±3.4 51.1±3.4 51.1±3.4 51.5±3.7 56.5±3.6 54.8±3.7 59.1±1.2

Hayes 68.9±8.6 68.9±8.6 68.9±8.6 88.0±4.6 77.9±7.6 79.1±11.3 75.6±10.2
Segmentation 88.8±2.9 88.8±2.9 88.8±2.9 89.0±2.8 87.5±1.5 90.9±2.9 88.8±2.9
Abalone8 21.4±1.3 21.4±1.3 21.4±1.3 33.1±0.9 23.9±1.2 21.9±1.7 38.5±1.2
Yeast3 65.4±2.3 65.4±2.3 65.4±2.3 64.9±1.8 69.7±1.0 63.5±1.2 67.0±2.6
Ecoli3 53.0±9.8 53.0±9.8 53.0±9.8 56.7±8.0 61.7±6.2 54.2±10.0 54.9±10.7
Pageblocks 81.7±2.6 81.7±2.6 81.7±2.6 81.3±2.5 81.3±4.4 81.5±3.2 81.2±2.2

Satimage 67.7±3.6 67.7±3.6 67.7±3.6 69.0±3.2 69.3±2.7 69.0±4.5 67.2±4.0
Yeast-0-5-6-7-9vs4 42.2±10.4 42.2±10.4 42.2±10.4 51.9±4.3 52.7±7.5 46.5±14.8 47.6±14.4
Libras 80.2±8.5 80.2±8.5 80.2±8.5 80.2±8.5 74.3±6.0 75.9±4.5 88.0±8.3

Yeast-1vs7 48.7±5.8 48.7±5.8 48.7±5.8 29.2±7.3 49.3±8.8 50.0±12.5 47.9±7.1
Arrythmia 17.1±21.7 17.1±21.7 17.1±21.7 16.7±21.4 16.7±21.4 20.5±22.0 17.1±21.7
Solar-flare-M0 16.5±6.8 16.5±6.8 16.5±6.8 24.3±1.7 21.5±6.4 11.7±7.9 26.7±3.2

Oil 54.6±10.8 54.6±10.8 54.6±10.8 58.0±9.4 57.1±4.8 66.6±10.0 59.7±10.1
Yeast4 31.2±11.6 31.2±11.6 31.2±11.6 35.7±2.1 43.6±4.1 35.0±13.2 40.2±8.7
Redwinequality4 10.8±5.8 10.8±5.8 10.8±5.8 15.2±3.7 13.3±7.1 12.2±7.0 19.2±5.5

Yeast5 70.5±11.0 70.5±11.0 70.5±11.0 60.2±8.1 64.9±8.1 72.0±7.4 69.7±9.6
Yeast6 50.0±13.9 50.0±13.9 50.0±13.9 35.3±5.3 52.9±9.9 46.6±18.1 47.9±11.5
Abalone17 15.0±9.7 15.0±9.7 15.0±9.7 15.0±5.7 18.3±7.8 17.0±7.2 14.7±2.4
Abalone20 00.0±0.0 00.0±0.0 00.0±0.0 8.3±5.2 7.6±7.5 00.0±0.0 1.2±2.4

Mean (k=1) 50.7 50.7 50.7 52.7 54.5 52.0 55.8

Mean (k=3) 50.8 55.2 51.4 54.0 54.6 52.7 55.9
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Fig. 13. Comparison of γ1−NN with the two versions of local-γ1−NN, in terms of G-measure
(G1).
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