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Abstract. Electronic medical reports (EHR) contain a vast amount of
information that can be leveraged for machine learning applications in
healthcare. However, existing survival analysis methods often struggle
to effectively handle the complexity of textual data, particularly in its
sequential form. Here, we propose SigBERT, an innovative temporal sur-
vival analysis framework designed to efficiently process a large number
of clinical reports per patient. SigBERT processes timestamped medical
reports by extracting and averaging word embeddings into sentence em-
beddings. To capture temporal dynamics from the time series of sentence
embedding coordinates, we apply signature extraction from rough path
theory to derive geometric features for each patient, which significantly
enhance survival model performance by capturing complex temporal dy-
namics. These features are then integrated into a LASSO-penalized Cox
model to estimate patient-specific risk scores. The model was trained and
evaluated on a real-world oncology dataset from the Léon Bérard Cen-
ter corpus, with a C-index score of 0.75 (sd 0.014) on the independent
test cohort. SigBERT integrates sequential medical data to enhance risk
estimation, advancing narrative-based survival analysis.
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1 Introduction

1.1 Background

Survival analysis plays a fundamental role in medicine (oncology, cardiology,
nephrology, critical care, etc.) where predicting the prognosis of the patient is
crucial to guide clinical decision-making. They help determine treatment strate-
gies, assess the efficacy of therapeutic interventions, refine clinical trial eligibil-
ity criteria, aid in risk stratification and early intervention planning. The Cox
Proportional Hazards [7] model has long been the gold standard since it was
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published in survival analysis due to its interpretability and effectiveness in iden-
tifying prognostic factors. One of its key advantages is its ability to effectively
account for censoring, which arises when the event of interest (e.g., death, re-
lapse, or disease progression) has not yet occurred for certain patients by the end
of the study period. Even without an observed event, censored patients provide
valuable information by contributing to likelihood, as their recorded survival
time improves risk estimation despite incomplete event data. This feature makes
the model particularly robust in real-world clinical settings, where missing or
censored data are very common. Over the past decade, more recent advances in
survival analysis have explored neural network-based models, which offer a pow-
erful alternative by capturing complex, non-linear relationships within patient
data [15], [18].

However, a key limitation of many survival models is their reliance on static
patient snapshots rather than dynamic, time-dependent data. Integrating struc-
tured (e.g., biomarkers, lab tests) and unstructured data (e.g., clinical narra-
tives) is crucial but intricate. Addressing these challenges requires advanced
NLP methods for processing unstructured clinical narratives, along with sta-
tistical techniques to enhance predictive accuracy and clinical applicability.

1.2 Related works

Recent advancements in survival analysis have introduced dynamic models capa-
ble of integrating time-dependent patient data. Dynamic-DeepHit [17] employs
RNNs with attention mechanisms to process sequential biomarkers and treat-
ments. Transformer-based approaches like BERTSurv [30] leverage pretrained
language models to extract survival-relevant features from unstructured clinical
notes, enhancing survival prediction. Meanwhile, CoxSig [3] incorporates signa-
ture transforms and controlled differential equations to model time-dependent
features.

Table 1 provides a survey and summarizes the performance of several re-
cent survival models across different medical domains and datasets, highlighting
their architectural choices and whether they incorporate sequential information.
Our model SigBERT compares favorably with these methods. Specifically, it
achieves a C-index of 0.75, a mean td-AUC of 0.794, and an IBS below 0.25 over
10 years-values that align well with or exceed several state-of-the-art models,
such as CoxSig or Penalized Regression Calibration. While some deep learning
approaches like Dynamic-DeepHit or Survival Seq2Seq achieve higher td-AUC,
these results are often obtained on synthetic or ICU-based datasets with struc-
tured biomarker sequences, which differ substantially from our real-world oncol-
ogy setting involving complex, unstructured textual data. It is also important to
note that strict comparison remains challenging due to differing data modalities
and availability, as most datasets used in these works are not publicly accessi-
ble or shareable due to clinical data protection policies. In contrast, our study
demonstrates strong results on a large-scale real oncology dataset, highlighting
the practical relevance and robustness of our method in operational conditions.
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. . |Oncology, narrative reports OncoBERT + Signature + [Yes, NLP with path signa-| _ .
SigBERT (Ours) (Léon Bérard) Cox LASSO tures 0.7 0-80 <02
1 |Oncology, Real-world Random Survival Forest No, features at fixed time| . ’
MSK-CHORD [13] | 5 CHORD) (RSF) point [0-58,0.83]
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CoxSig [3| (NASA, Califrais) transforms Signature B (0.74,0.87] 1[0.09,0.15]
. Yes, from sequential clinical
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BERTSurv [30] ICU (MIMIC-IIL, not oncology) |Transformer (BERT) notes (NLB) 0.7
DySurv [21] ICU (MIMIC-II, eICU) CVAE + LSTM Kf:( d”)'e‘l“e“““‘l BHR (strue-| 6 6o included
Survival Seq2Seq |General (MIMIC-IV + Seq2Seq (GRU-D U . _ p _
(24] synthetic) Attention) Yes, hospital time series [0.84,0.91]
Dynamic-DeepHit Cystic Fibrosis (UK Registry) Deep RNN + Temporal Yes, repeated biomarker vec- 0.94,0.96] |td-AUC _
[17] Attention tors

General + oncology (e.g., ~ . . ! o

5 Y g 8 8

DeepSurv [15] METABRIC) DNN with Cox PH loss No, static baseline covariates|[0.61,0.86]
Landmark Liver disease (PBC), Aging Landmark (Cox, RSF, Yes, repeated  biomarker| -
Endpoint [10] (PAQUID) penalized) measures (0-73,0.87] [[0.076, 0.089]
Penalized Reg. Neuromuscular (DMD, Penalized Cox + Mixed Yes, blood biomarker se- 0.7,08] 0.73,0.87] |-
Calib. [27] MARK-MD) Effects quences o T

Table 1. Overview of state-of-the-art survival models across domains. All reported
metrics are taken from the original publications; no external re-evaluation was per-
formed on our dataset.

1.3 Owur Contributions

Our approach contributes to survival analysis by leveraging rich representations
from NLP-based embeddings, combined with signature transforms to capture
the temporal dynamics of patients’ follow-up, thus demonstrating the impact of
unstructured clinical narratives in oncology risk estimation.

Additionally, our pipeline supports multi-data integration, enabling future
incorporation of structured patient data, such as tumor stage, demographic fac-
tors, and tumor topography. Moreover, the use of signature transforms allows us
to process a very large number of clinical reports per patient without incurring
a prohibitive computational cost. Unlike traditional models that struggle with
long sequences due to high memory and time complexity, our method efficiently
encodes all available follow-up data for each patient. Please refer to our GitHub
repository at https://github.com/MINCHELLA-Paul/SigBERT for access to the
code. The notebook SigBERT_study.ipynb provides numerous complementary
results.

2 Method

Our dataset consists of the following information: Each patient is associated
with a set of medical reports, each recorded at a specific timestamp, providing
a longitudinal sequence of textual data. In addition, we have access to each
patient’s time in the study and event status, indicating whether the patient
experienced the event of interest (e.g., death) or was censored. This forms the
foundation for our survival analysis pipeline. One can refer to Figure 1 at any
time for an overview of our global pipeline.
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Fig. 1. Global Pipeline: A five-step approach for SigBERT. Step 1: Extract word
embeddings from medical reports using OncoBERT'. Step 2: Compute sentence embed-
dings by averaging word embeddings for each report. Step 3: Compress the sentence
embeddings through a dimensionality reduction mapping. Step 4: Apply the signature
transform to extract coefficients capturing temporal dynamics as covariates. Step 5:
Use a Cox model with LASSO regularization to estimate risk scores.

Before computing embeddings, raw clinical reports are preprocessed to clean
and standardize the textual data. The reports are loaded from structured files,
with unnecessary columns removed. The text field (constituting the report at
time t) is cleaned by stripping redundant metadata, such as the report source
when it appears at the beginning. Duplicate reports are dropped to avoid repeti-
tion. In parallel, all date-related columns are converted to a consistent datetime
format. This preprocessing step helps ensure the text input is clean and coherent,
while preserving the temporal structure needed for downstream analysis.

To process long clinical texts, we kept the entire content of each medical
report without truncation. Note that OncoBERT [29], being a fine-tuned version
of CamemBERT [20], inherits a maximum input length of 512 tokens due to its
RoBERTa-based architecture. We will describe it in more detail in the following
section. We did not apply any length filtering or summarization at this stage.

Furthermore, to better simulate real-world clinical scenarios, we deliberately
mask the last (at least) 100 observed days from each patient’s record. This
ensures that predictions rely on earlier medical data rather than immediate pre-
mortem indicators, improving generalization for prospective survival analysis.
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2.1 Embeddings computation

The first step of our pipeline involves transforming unstructured medical reports
into numerical representations using OncoBERT [29]. It is a CamemBERT-based
language model fine-tuned on a large corpus of oncology-related clinical notes
from Léon Bérard Center, making it particularly suited for extracting meaningful
representations from oncology-specific narratives. This approach enables us to
numerically encode the semantic information embedded in the textual data while
preserving the rich clinical context contained within patient histories. We obtain
a dictionary mapping each word (token) to its corresponding embedding vector
within the learned (fine-tuned) vector space of dimension p = 768. It can be
formally expressed as follows for a given patient ¢:

{wordy : vy,, ..., wordn, : Vuy, }i,

where N, is the number of unique tokens in the medical report at time t.

It is worth emphasizing that the superior performance of OncoBERT is con-
sistent with expectations for a risk estimation task in oncology based on French
clinical narratives. OncoBERT is a domain-specific language model fine-tuned
on cancer-related French medical reports, and thus better captures the linguistic
and clinical nuances of the data (including specialized oncology vocabulary and
domain-specific phrasing). As such, it is not surprising that this specialized NLP
model outperforms more generic approaches: for instance, Word2Vec-based em-
beddings [22], even with carefully tuned parameters, reach at most a concordance
index of 0.6, while CamemBERT-based embeddings reach at most 0.7.

We aim to aggregate these representations into a single vector per report,
so that each patient’s medical record at time ¢ is captured as a meaningful
numerical representation. Thus, we employ the Smooth Inverse Frequency (SIF)
method proposed by [1], a robust unsupervised approach for computing sentence
embeddings. For a arbitrary report s, its representation is given by:

1 a
= — — v, €RP
v \S\Zf(w)—kav

where f(w) represents the frequency of a given word in the corpus, and a is a
smoothing parameter (typically set to 1073).

While it is common practice to use the CLS token output from BERT-based
models to represent entire input sequences, we explored an alternative approach
for encoding clinical reports. Although the CLS token was initially considered
in our pipeline, we ultimately adopted the SIF method based on retrospective
evaluation results and its strong theoretical foundations. Specifically, SIF-based
sentence embeddings yielded consistently better predictive performance, includ-
ing a higher C-index (0.75 vs. 0.70), improved time-dependent AUC, and lower
Brier Scores. We attribute these gains to the robustness of the SIF method,
which re-weights and averages token-level embeddings to form a more stable
and generalizable sentence-level representation. Moreover, SIF offers a practical
advantage when handling long clinical texts: by aggregating token embeddings
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across the entire report - possibly by processing it in overlapping chunks - it
allows us to capture information beyond the 512-token input limit inherent to
BERT models. In contrast, the CLS token is extracted from a truncated version
of the input (limited to 512 tokens) and its representation is tightly dependent
on the pretraining and fine-tuning stages of the language model - whereas our
OncoBERT model was not specifically optimized for the downstream use of CLS
embeddings in survival prediction tasks.

At this point, a patient ¢ with IV, clinical reports can be formally represented
by a collection of p-dimensional time-indexed vectors as follows:

(’Utl""?Uf/Ni)iT S RNiXp.

We will define the signature transform in the following section, which is the
mathematical framework used to extract features from time series for our survival
model. For now, it is sufficient to note that for p time series and a given truncation
level L, the number of signature coefficients to compute is given by pr+_11_ L _
O(p"). This quantity grows exponentially with respect to the number of channels
(i.e., time series dimensions) involved. For instance, with p = 768 and L = 3,
this results in approximately 4.5 x 10® coefficients, which is computationally
intractable.

We are thus compelled to reduce the dimensionality of the sentence embed-
dings. This requirement also brings significant advantages. The first is compu-
tational: reducing p greatly improves the numerical feasibility of downstream
processing. The second is theoretical: the original embedding space of dimension
p may be projected into a lower-dimensional space of size p while retaining most
of the information relevant to our prediction task, namely risk estimation. By ap-
plying a linear transformation, we can map the embeddings into this compressed
space and carry out computations much more efficiently.

A straightforward approach is to apply Principal Component Analysis (PCA)
on all sentence embeddings in the training set to obtain a compression matrix
Rcomp- From a linear algebra perspective, Reomp € RP*? is a projection matrix
whose rows correspond to the top p principal components, i.e., the orthonor-
mal directions that capture the highest variance in the original p-dimensional
embedding space. Applying Rcomp to each sentence embedding results in a lower-
dimensional representation in R? that retains as much relevant information as
possible in terms of variance. This baseline method is simple to implement, com-
putationally efficient, and often yields satisfactory results in practice.

We define the compressed vector as U := Rcomp * Us. This transformation
preserves most of the semantic information while reducing the dimensionality of
the paths from p = 768 to, for instance, p = 25. Then, a patient with NV; reports
can be formally represented by a family of p time series as follows:

T

g

(Vtys-- o Tey,) e RNixp,

The choice of this compression value is based on a retrospective study eval-
uating the trade-off between computational cost and the C-index achieved on the
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test set. By progressively increasing the compressed dimension
(p = 10,15,20,25,30,...), we observed convergence of the C-index on the test
set starting from p = 25. This value was identified as the optimal candidate, as it
provides satisfactory performance while guaranteeing computational efficiency.

2.2 Signature features extraction

The signature of a path [5], adapted for rough path theory by Terry Lyons [19],
provides a systematic method for encoding sequential data into geometric fea-
tures, using iterated integrals. Consider a p-dimensional path (which means each
coordinates form a path), denoted as v = (v!,...,vP), defined over the interval
[0, T]. For any integer k > 1, any sequence of indices i1, ...,i; € {1,...,p}, any
0<t <--- <t <T, the iterated integral signature of v up to time ¢t € [0, T
is defined as:

(P15esik) i ik
S(v)o.t = e dug ... dugk.
0<trp<t 0<t1<t2

The collection of these features is organized in tensor form which uniquely
encodes the path and is defined as:

St (v) = (S()§y ™

) € (RP)®*,
’ (i15e-sik)E{L,...,p}P

Thus, the truncated signature up to order L naturally belongs to the truncated
tensor algebra T<L(RP) = @fZO(RP)@“ of order L over RP :

L
k=0

S=L(v) = (S*(v)),_, € T=H(RP).

In addition to encoding temporal dynamics, this approach handles sequences
of varying lengths and is invariant to translation and temporal reparameter-
ization (see [6]), making it well-suited for patients with different study entry
points and durations. Moreover, one of the most fundamental and computa-
tionally advantageous properties of the signature transform is Chen’s identity,
which provides a recursive structure for computing signatures efficiently. Given
two continuous paths X : [a,b] — R% and Y : [b, c] — R?, their concatenation is
defined as the path X *Y : [a, ¢] — R? such that:

o Xt, t e [a,b],
(KxY): = {Xb—i— (Y, —Y;), tebd

Chen’s identity states that the signature of a concatenated path can be factorized
as the tensor product of the signatures of its subpaths:

S(X +Y) = S(X) ® S(Y).

This property is particularly useful in computational applications, as it allows for
the efficient computation of path signatures by processing segments separately
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and combining their signatures multiplicatively, rather than computing the full
iterated integral from scratch.

Finally, for a given patient i, the set of extracted covariates over their follow-
up period, is denoted as:

Si = (SW,..., 800, LD, ger))
K3

In order to ensure unicity of signature, the usual framework incorporates

a monotonic component, especially time component. Thus, each patient’s time

series has been transformed into a set of covariates, providing a structured ap-

proach to handling sequential data. This transformation enables the extraction

of meaningful temporal features, paving the way for their integration into a

regression-based survival model, such as the Cox Proportional Hazards model,
to assess patient-specific risk factors.

2.3 Survival Analysis Modelling

Our choice to illustrate the impact of textual data focused on the model of [7],
which accounts for censored patients, i.e., those for whom the event of interest
T (e.g., death, relapse) has not yet occurred. These observations still contribute
to the likelihood estimation, helping to reduce bias and improve the robustness
of predictions. The goal is to estimate the probability of a patient surviving
beyond time ¢, noted as S(t | S) := P(T > ¢ | S) when knowing their covariates
S. This estimation relies on the key concept of instantaneous hazard rate h,
which quantifies the infinitesimal probability of the event occurring at ¢ and is
related to survival through the following equation:

S(t|S)eXp</th(s|S)ds).

Cox [7] proposed the generalized linear model:

h(t | S) = ho(t) -exp (S- B),

where B € RP? is the vector of parameters to be estimated, and hg is the baseline
hazard, common to all patients, as estimated by [4]. We define n := S- 3, referred
to as the risk score. Estimating @3 involves managing a substantial number of
covariates. As mentioned earlier, this is due to the signature transform, which
generates a high-dimensional feature space: for p input channels and a truncation
level L, the number of resulting signature coefficients scales as O(p”). Even after
dimensionality reduction, the resulting covariate space remains large. To reduce
the risk of overfitting and improve model stability, we apply the LASSO (Least
Absolute Shrinkage and Selection Operator) regularization to the Cox model, as
originally introduced in [28]:

~0

B e argmax log PL(B) — |81, (1)
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where PL(3) is the partial likelihood defined in [8], and A > 0 the regulariza-
tion parameter. ||3||1 is the ¢;-norm of the parameters 3. The impact of LASSO
regularization is twofold: it shrinks some coefficients towards zero, effectively
removing less relevant covariates, and it selects only the most important predic-
tors for survival, enhancing model stability. The objective function from (1) to
be minimized, with log applied, is explicitly formulated as:

1By =Y [siB-log > exp (8;8) | =AY Ikl
k=1

i:0;=1 JER;

This formulation provides an explicit likelihood function to be maximized algo-
rithmically, with é; € {0, 1} determining whether an event (e.g., death) has been
observed for patient 4, associated with study duration T;, and R; represents the
risk set i.e., set of individuals still at risk at time of T}, that is R; = {j : T; > T;}.
Moreover, by enforcing sparsity, the LASSO-regularized Cox model significantly
reduces the number of active covariates, leading to faster computational per-
formance. This suggests that the model achieves a favorable balance between
overfitting and underfitting, leveraging a compact and efficient representation of
the risk factors while maintaining strong predictive power. Finally, the estimated
risk score under LASSO regularization is obtained simply as the dot product:

~0q

7=54

Consequently, our methodology assigns each patient - characterized by a series
of medical reports - an estimated risk score 7, effectively capturing the tem-
poral evolution of their clinical trajectory. This structured approach enables a
comprehensive integration of narrative data into survival analysis.

3 Experiments

3.1 Cohort

This study complies with the General Data Protection Regulation (GDPR) and
falls within the scope of scientific research conducted in the legitimate inter-
est of cancer research, in accordance with Articles 6.1.f and 9.2.j of Regulation
(EU) No. 2016,/679. This project has been officially registered under the MR004
declaration (V3.2, 23/08/2021) at the Léon Bérard Center, ensuring compliance
with legal and ethical standards for processing health data. The data have been
carefully anonymized and can only be used within the framework of this study.
No patient were opposed to this study. To ensure the reliability of our data,
we selected a study cohort consisting of patients hospitalized - at least once -
at the Léon Bérard Center from 2000 to 2024, with comprehensive follow-up
throughout their medical care to ensure data completeness and accuracy.

The dataset consists of a clean and structured text corpus containing 274,420
medical reports from 7,121 patients, among whom 4,983 are deceased and 2,138
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are censored. Reports mainly include consultation reports (63%) and hospital
stay reports (32%). Each patient has an average of 39 medical reports (sd 25),
reflecting the longitudinal nature of the dataset. The dataset covers all types of
cancer, allowing for broad applicability of the survival analysis. The most preva-
lent cancer types include breast cancer (25%), gynecological cancers (9.7%),
gastrointestinal cancers (8.6%), lung cancer (5.5%), prostate cancer (7%), en-
docrine tumors (4.6%), among others. The median survival time in the cohort is
1,024 days (approximately 2 years and 10 months) and the study period spans
from 1997 to 2020, covering the 5th to 95th percentile of diagnosis dates.

3.2 Hyperparameter Search

Our experimental setup is designed to ensure reproducibility, robustness, and
realistic evaluation in a complex real-world clinical context. We emphasize that
our NLP model, OncoBERT - fine-tuned on oncology-specific clinical notes - is
used as is throughout the study without further task-specific adaptation, thereby
reflecting practical deployment scenarios. The survival model was trained on
a cohort of 3,560 patients (136,748 reports) and evaluated on a separate test
set of 3,561 patients (137,672 reports), using a structured and stratified train-
test split to preserve temporal and distributional consistency. To calibrate the
model, we conducted a grid search for the LASSO regularization parameter A
within the range [0.001, 10], using a fixed step size of 0.001. We selected the
value that maximized the cross-validation concordance index (C-index) averaged
over five independent validation folds, within the training dataset. Our careful
hyperparameter tuning, combined with a large dataset and relevant baseline
comparisons, supports the reliability of our results and confirms the model’s
ability to handle high-dimensional sequential text data.

At this step, the longitudinal data were transformed using the signature
method, effectively eliminating any temporal constraints that could arise when
subdividing the dataset for cross-validation. The selection criterion aimed to
maximize the C-index through five-fold cross-validation. Specifically, for each
candidate value of A\, the model was trained on a partition of the training cohort
and evaluated on held-out subsets - within the training set -, maintaining equal
proportions across folds.

The optimal value was then chosen as the one yielding the highest mean
C-index, promoting robust generalization and avoiding overfitting. This tuning
process was crucial for balancing model sparsity and predictive accuracy.

3.3 Performance Metrics

The validation process involved random splitting, where the test set was divided
into ten disjoint subsets. Model evaluation was then repeated independently
on each of these subsets, allowing us to compute mean performance metrics
along with their standard deviations. To ensure a comprehensive evaluation,
we rely on well-established metrics: the concordance index (C-index), the time-
dependent AUC and the Brier Score. These metrics collectively provide a robust
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assessment of the model’s predictive performance by capturing complementary
aspects of survival prediction accuracy. The C-index, a fundamental metric in
survival analysis introduced by [12], measures the proportion of concordant pairs
among all possible pairs. Specifically, if patient j experiences the event before
patient i, then the model should assign a higher risk score to j. It is expressed
as followed:

2oy Lim<ny - Yasa 9

Zi,j ]]'{Tj<T11} ’ 6j ,

where T; and T; represent the observed survival times of patients 7 and j, re-
spectively. The estimated risk scores assigned by the model to these patients are
denoted as 7); and 7);. The indicator variable §; equals 1 if patient j experienced
the event, and 0 otherwise. A C-index of 1 characterizes a perfect model, while
a C-index of 0.5 corresponds to random performance. A C-index above 0.7 is
generally considered satisfactory.

Its time-dependent counterpart, the td-AUC, is defined and then integrated
over the relevant time interval (see [16], [25]). It evaluates the model’s ability
to discriminate between patients who experience an event at time ¢ and those
who survive beyond ¢. This allows for a more precise assessment of the model’s
predictive power at different time points. By incorporating dynamic survival
probabilities, the td-AUC provides a temporal perspective on model performance
and is particularly valuable in contexts where the ability to predict risk evolves
over time. It is defined as:

C-index =

Yo Yrsolir <oy - Lig>aiy - 05(0)
i Yrsoy Lir <y - 65(t)

Finally, the function also provides a single summary measure that refers to
the mean of the AUC(¢) over the time range |11, T2]:

AUC(t) =

AUC(Tl,TQ) = /\1(/_;()/ @(t) dé(f),
72) J7m1

G(m) —

where G(t) is the Kaplan-Meier estimator [14] of the survival function. This
accounts for censoring and provides a single summary measure of model perfor-
mance across the specified time interval.

In recent years, growing attention has been paid to the calibration of survival
models, not just their discriminative ability. While metrics such as the C-index
remain central for assessing a model’s ability to rank individuals by risk, they
do not capture whether predicted survival probabilities are well-aligned with
observed outcomes. As a result, proper evaluation now typically includes both
discrimination and calibration metrics, to ensure that models are not only capa-
ble of ranking patients but also of assigning realistic survival probabilities. Cal-
ibration error is quantified by the Brier Score (BS) that evaluates the accuracy
of survival predictions by assessing how close the estimated survival probability
is to the actual survival status of each individual (also see [16], [25]). With pre-
vious notations, and denoting V the set of individuals, the Brier Score can be
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expressed, at time %, as:

1-8(t| Xi))z
G(1)

(0—§(t | xi))2

= 6+ Ly
G(Ti) {T;>t}

1
BS(t) = m Z ]l{quSt}

%

Similar to the td-AUC, the Integrated Brier Score (IBS) provides a global
average measure of calibration over a predefined time range |71, 72|, defined as:

IBS(Tl,Tg) = 1 / BS(t) dt.

T2 —T1 1

A useful reference point for evaluating the BS (or the IBS) is the naive
baseline, where the survival probability S(t) is set to a constant value of 0.5 for
all individuals. In this case, the Brier Score simplifies to BS(t) = 0.25. Thus, a
BS (or an IBS) below 0.25 is considered a good indicator of calibration.

3.4 Experimental Results

All our results are summarized in Table 2. Our model achieves a mean C-index
of 0.75 (sd 0.014) with a 95% confidence interval [0.7419, 0.7596] (calculated
by Jackknife method [11]), indicating good discriminative ability and suggesting
the viability of our temporal approach.

Metric Test Set
Patients 3,561
Reports 137 672
C-index (mean) 0.75 (sd 0.014)
Clp.95 for C-index [0.7419, 0.7596]

Pearson: -0.533 (sd 0.0359)

lation log(Ti ~ Risk
Correlation log(Time) ~ Ris Spearman: -0.530 (sd 0.0459)

Mean td-AUC over 10 years 0.794 (sd 0.029)
3 years: 0.0532 (sd 0.0029)
Integrated Brier Score 5 years: 0.1055 (sd 0.0062)

10 years: 0.2183 (sd 0.0153)
Table 2. Evaluation results for our pipeline.

Figure 2 (a) illustrates the evolution of the C-index on the test set as a
function of the number of known reports per patient. The evaluation starts with
only two reports per patient, progressively incorporating one additional report
at a time until the maximum available number is reached for each patient. The
resulting monotonic increase in performance highlights the ability of the signa-
ture transform to effectively leverage sequential information, demonstrating its
impact on improving the model’s predictive accuracy as more medical history
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Fig. 2. (a) Test C-index progression as a function of the maximum number
of known reports per patient; (b) Log-transformed study time distribution
across risk quartiles. (a) The C-index starts at 0.63 with only two reports per pa-
tient and increases steadily, reaching 0.70 at 28 reports and converging to 0.75 beyond
100 reports. This highlights how access to a richer medical history improves prediction,
especially with reports closer to the event. (b) Boxplots illustrate the distribution of
log-transformed survival times across predicted risk quartiles. Despite some natural
overlap due to the complexity of survival data, a clear decreasing trend is observed:
higher predicted risk scores align with shorter observed survival times. Both ANOVA
and Kruskal-Wallis tests yield p-values below 107°, confirming the statistical signifi-
cance of this separation.

is incorporated. This demonstrates that as the number of known time points
increases, more information can be extracted, leading to a more accurate esti-
mation of overall survival.

The mean td-AUC over 10 years is 0.794 (sd 0.029), and the IBS remains
below 0.25 up to 10 years, reaching 0.0532 (sd 0.0029) at 3 years, suggesting
that the model maintains good predictive accuracy while ensuring proper cali-
bration. These results align with state-of-the-art model performance while being
obtained in a complex real-world clinical setting, reinforcing the credibility of
our approach.

The correlation between the logarithm of the time event for uncensored
log(T) and the estimated risk score 7 is significantly negative (Pearson: -0.533,
Spearman: -0.530, both with p-value < 107°), demonstrating that higher esti-
mated risk scores are associated with shorter survival times. This reinforces the
model’s ability to capture meaningful risk stratification.

Figure 2 (b) further illustrates this relationship by displaying the distribu-
tion of log-transformed study durations across predicted risk quartiles. Despite
some natural overlap due to the complexity of survival prediction, a clear trend
emerges: Patients with shorter survival times tend to be classified into higher
risk quartiles.

Additionally, the model effectively handles a large number of clinical reports,
leveraging more than 100,000 medical documents for training and evaluation.
The extensive dataset ensures robust performance assessment over numerous
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time points, highlighting the scalability and real-world applicability of our ap-
proach.

To assess its added value, we compared it to several naive baseline meth-
ods. First, we considered using only the last available clinical report for each
patient, extracting its sentence embedding and feeding it directly into a Cox
model; this resulted in a low C-index of 0.55. We then tested a simple average
of all sentence embeddings per patient as input to the same model, which led to
a slightly improved yet still unsatisfactory C-index of 0.57. Lastly, we evaluated
the Cox-Time model [16], which incorporates temporal features directly as co-
variates; it achieved a C-index of 0.63. These results demonstrate that simplistic
representations or direct time encodings are insufficient to accurately capture the
temporal complexity of patient trajectories. In contrast, our method, grounded in
rigorous mathematical feature extraction, substantially improves performance,
emphasizing the importance of modeling temporal dynamics with structured and
principled approaches.

Our project relies on several specialized packages to ensure efficiency and
accuracy throughout the pipeline. SIF [1] implements the smooth inverse fre-
quency method for computing sentence embeddings. The extraction of path
signatures, a core component of our feature representation, is performed us-
ing iisignature [26], which exploits Chen’s identity for efficient computation
of iterated-integral signatures. For the survival model, we employ skglm [2], a
high-performance package designed for generalized linear models, allowing effi-
cient LASSO-penalized Cox regression. The estimation of survival functions, risk
scores, and baseline hazards is handled through lifelines [9], which provides
a comprehensive framework for survival analysis. Finally, we use sksurv [23] to
compute key evaluation metrics, such as the concordance index, time-dependent
AUC, and Brier Score, supporting rigorous model assessment.

Furthermore, the use of compression, LASSO regularization, and Chen’s iden-
tity for signatures enables efficient training and inference, requiring only a few
minutes once word embeddings are extracted, highlighting another unique ad-
vantage of our model.

4 Conclusion

Our model SigBERT highlights the potential of leveraging sequential textual
data for survival analysis in oncology by introducing a structured and repro-
ducible pipeline. Indeed, the judicious combination of a fine-tuned NLP model,
signature transforms to capture the temporal progression of patient follow-ups,
and a Cox model with LASSO regularization leads to consistent and promising
results. These findings pave the way for extending the model to the entire patient
database, enabling broader generalization of the approach.

Among the limitations of our study, one key constraint lies in the necessity
of compressing the original high-dimensional embeddings before applying the
signature transform. Without this step, the number of coefficients to compute
becomes prohibitively large, rendering the approach computationally intractable.
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While this compression might initially seem restrictive, it opens an interesting
avenue of research into the sparsity and intrinsic geometry of the embedding
space. It suggests that only a carefully selected subset or combination of em-
bedding dimensions may be sufficient for effective risk estimation and survival
prediction.

Another important consideration is the dependency on OncoBERT, which,
although specifically fine-tuned for our oncology dataset, can in principle be re-
placed with other natural language models. Furthermore, our model is currently
best suited to data collected at the Léon Bérard Center, where follow-up medical
reports are systematically available. A more thorough assessment of the model’s
generalizability will require applying it to sequential textual data from patients
in other institutions and clinical settings. To date, we have not benchmarked
alternative language models on this specific survival task, which is partly due to
the novelty of our approach (combining NLP embeddings with signature trans-
forms and Cox survival modeling). As such, our pipeline represents a first step
toward this direction, and future work will be needed to assess the impact of
alternative embedding strategies within this framework.

A key avenue for improvement lies in integrating tabular and sequential data
alongside textual embeddings. In future work, we plan to systematically compare
different survival models to assess their relative performance. While we employed
the Cox LASSO model due to its strong empirical results in our experiments, a
broader benchmarking study is required. This will involve evaluating alternative
approaches such as Random Survival Forests, Cox Neural Networks, and Cox
Elastic Net, among others. Establishing a standardized comparison framework
will allow us to identify the most robust and interpretable survival models for
oncology risk estimation. Finally, by combining narrative and structured data -
such as patient characteristics, disease features, and biological markers -, we aim
to develop a multimodal survival model capable of providing more personalized
and accurate oncology care.
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