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Introduction

How are we going to work 7 |

This course will be divided as follows :

m 5 to 6 classes of 3 hours on Machine Learning and more precisely
on Ensemble Methods. We are going to study how to combine several
models together in order to build stronger ones and try to explain
how/why it works. If we have time, | will also speak about one of the
following topics : metric learning and imbalanced learning, transfer
learning and domain adaptation.

m 1-2 practical sessions in order to apply/use the presented methods
and be sure that you are able to conduct experiments in a perfect
manner.
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Introduction

How are we going to work 7 Il

Evaluations

You will have two different evaluations :

e One exam : it will be used to test what you have learned

andunderstood from the courses. | am going to ask several questions
and provide some exercises.

e One project : the idea will be to apply most of the methods | have
presented during this course. You will have to apply them and
compare them in order to write a report which will look like a
research report.
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Introduction

How are we going to work ? Il

Material

The material of this course will be available on my website, at the
following address :

Ressources

You will find :

e the slides of this course,

e a document with the basics in Machine Learning and also the content
of this course (some and more information than you have in the
slides),

e some exercises in order to practise what have been seen during the
course,

e your project for this course.
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https://guillaumemetzler.github.io/courses/ensemblemethods.html

Basics in Machine Learning

Fundamentals in Machine Learning |

What do you remember ?

Tell me what you know about Machine Learning?
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Basics in Machine Learning

Regression models
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Basics in Machine Learning

Regression Models |

Linear Regression

Linear regression are mainly used when we aim to predict a real value e.g.
the price of an house or the score obtained at a given exam as illustrated
after.
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Basics in Machine Learning

Regression Models ||

in its simple formulation, the learned model takes the form of straight line.

Given S = {(x;,%:1)}", € R x R, we aim to find the best line which

approximates the scatter plot, i.e. to learn a hypothesis h of the form :
h(0, X) =0p+ 0121 + Oox0 + ... + O424.

In the case of regression tasks we usually minimize the Mean Square Error
(MSE).
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Basics in Machine Learning

Regression Models Il

Linear Regressio

We consider the following probabilistic model for our data.
Y =60X +¢,
where Y it the predicted variable and X is the set of variables that are used for the prediction and & represents the

error of the model.
We consider a hypothesis h of the form :

h(0,x) =0g + 011 + O2xz2 + ...+ Ogzq.

Given a set S of m examples, X = (x1,%2,...,%Xm) and y = (y1,¥2,.-.,Ym) then the solution of Mean
Square Error problem :

m
a 2 g 2
min y — h(6,X = min yi — h(0,x;
LS R W BICELICES)
is given by :

6=xTx)"txTy.
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Basics in Machine Learning

Regression Models IV

This first model is pretty simple and an analytical solution is available,
meaning no training process is needed to learn the model.

Let us place ourselves in a slightly different regression context now and
consider the following example.
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Basics in Machine Learning

Regression Models V

We are trying to build a regression model capable of determining whether
or not an individual has an infection according to his lymphocyte count.
The predicted variable can take two values : 1 if the person has an
infection and 0 otherwise.

At first sight, nothing prevents us from learning a linear model to try to fit
our new point cloud, as illustrated below.
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Basics in Machine Learning

Regression Models VI

Infection

Lymphocyte count
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Basics in Machine Learning

Regression Models VII

Lymphocyte count
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Basics in Machine Learning

Regression Models VIII

Lymphocyte count
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Basics in Machine Learning

Regression Models X

Such a model takes its values in [0, 1] and we can thus say that it
estimates the probability of having an infection. To transform the values

predicted by a linear regression model into probabilities, we use the logistic
function, i.e. we compute :

1
L+ exp (=h(x)’

We talk about linear logistic regression.
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Basics in Machine Learning

Regression Models X

Linear Logistic Regression

The Logistic Regression model, also called the logit model has been
introduced in the middle of the 20" century [Cox, 1958] but the use of
logit models dates back to the end of the 19*" century [Cramer, 2003].

This model is used to estimate the probability that an example belongs to
a given class, for instance the positive class : n = Pr(Y =1 | X).

More precisely, the logistic regression aims to compute the logarithm of
the odds, i.e. the ratio of the probabilities.
Then we estimate the log of this ratio using a linear model :

Priy=11%)Y _ }w bx) = bt (x,w
ln(PT(y:O|x)>h( b,x) =b+ (x,w).
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Basics in Machine Learning

Regression Models Xl

Thus, once the parameters of the model are learned, we can compute the
probability of being in class 1 :

exp(h(w,b,x)) 1

Pry =11 = 1 explhlw, b,x)) 1+ exp(—h(w, b, %)

Such function is called a logistic function and takes its values in [0, 1].

An example x; is (usually) predicted in class 1 if Pr(y =1|z) > 0.5, i.e.
if h(w,b,x) > 0.
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Basics in Machine Learning

Regression Models XII

To estimate the parameters of the model, we maximize the likelihood of
the data £(w, S), where S is a set of m examples.

&w,b,8) = [[Pr(vV =ui | X =x),

= H PrY =y | X =x;) X H PrY =y | X =x),
1=Ly;=1 1=1,9;=0

- ﬁ <1 + exp( 2(W7baXz‘))>yi ) (1 + eXP(hl(Wa bvxi))>(1_yi
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Basics in Machine Learning

Regression Models XII|

Note that we usually prefer to minimize the negative log-likelihood of the
data :

((w,b,8) = —In(&(w,b,5)),
1
- Zzlyl n (1 +exp (—((w, x;) + b)))

1
+(1—yi)n <1 C T4exp(—((w,x;) + b))) .
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Basics in Machine Learning

Regression Models XIV

By doing so, we find the logistic loss function introduced before. In the
following, for the sake of simplicity, we will set
. Therefore, the optimization

g(w,b,x) = 1+ exp (=((wW, %) + b))

problem becomes :

min = — *Zyzln (W, 0,%;)) + (1 —y;) In (1 — g(w,b,x;)) .

w,beRA+1
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Basics in Machine Learning

Regression Models XV

Some remarks :

e There is no analytical solution to this problem

e Use gradient descent algorithm to solve it : usually Newton's Method
or an approximation such as BFGS

e Flexible with the use of the threshold (especially in imbalanced
settings), if you want to tune specific measures.
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Basics in Machine Learning

Regression Models XVI

In order to avoid over-fitting, a regularization term of the form A||w|| is
usually used in regression tasks. Thus, the optimization problem can be
rewritten :

m

min Zyz In (g(w, b,x:))+ (1 — ) In (1 = g(w, b,x;)) + Al[w][%.

w,beRd+1

In the gaussian linear model, it can be written as :

m

: o )2 2
min |y — h(6, X)[3 + A|6]|* = o Z;(yz h(0,xi))” + 6]

OcRd+1
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Basics in Machine Learning

Regression Models XVII

Multinomial Logistic Regression

Let us consider that the set of label is now {1,2,...,q}, where ¢ > 2. For
the sake of simplicity, we still write w = (wg, w1, ..., wq) our vector of
parameters.

In the binary case, we have built a linear model in order to estimate the
log ratio of the probability of belonging in class 1 to the probability of
belonging in class 0 (also called a logit).

Now, we have to do something similar but with more than two classes, we
thus have to select one class as a reference class, let us say the class g,
and we are going to build all the following models :
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Basics in Machine Learning

Regression Models XVIII

J(Pry=11x)N\ W
n (B =ay) = 0

L(Ery=21%Y _ @,

1 (Pr(qu)__)' B W,
J(Prly=a-21%\ -y
o (S o) =
N Priy=q—1]x) _ WD o
(o ) =
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Basics in Machine Learning

Regression Models XIX

Regarding this set of equations, it remains possible to provide the value of
Pr(y=Fk|x),Vk=1,...,q. In fact, if we take the exponential and we

sum all the equations and use the fact that
Priy=q|x)=1->1" 1Pr(y:kz|x),then we have :

1-Priy=q|x) _ quexp ((W(k),X>) 7
k=1

Pr(y =q|x)

and thus
1
1+ Zk 1 €Xp (( (k),x>) .

Priy=q|x) =

Fall 2024
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Basics in Machine Learning

Regression Models XX

Using this equality, we immediately have for all k£ € [1,q — 1],

exp(( (k),x)) .
1+Zl 1exp(< (l),x>)

Several remarks about this model

Priy=k|x)=

e The defined probabilities sum to 1

e The number of parameters that we have to learn is equal to the
number of parameters of a single binary logistic regression times
number of classes minus one, i.e., (¢ —1) x (d+ 1)

e Note that the way model is built completely depends on the reference
class, if we change it, the parameters have no reasons to be the same.
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Basics in Machine Learning

Regression Models XXI

Using this approach the learning process consists in learning ¢ — 1 binary
logistic regression and then, at the prediction step, compute all the
probabilities Pr(y = k | x),Vk =1,...,q. A new example x’ is assigned
to the class for which it has the highest probability of belonging, i.e.,

y = arg max Pr(y =k | x).
ke[1,q]
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Basics in Machine Learning

Regression Models XXI|I

To make our model independent from the reference class ¢, we can
consider that each probabilities are given by :

o exp ((w(k),x))
B Z?:1 exXp (<W(l)> X>) 7
The above function is know as the Softmax function (it can be seen as

generalization of the logistic function) and we can notice that the sum of
probabilities is still equal to one.

Pr(y =k |x)

VeE=1,...,q.
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Basics in Machine Learning

Regression Models XXIII

Estimation

Because we are dealing with several label, we have seen that we can assign
a different probability for each example to belong in a given class. Thus
the likelihood £ of our data will be based on the Multinomial distribution
and defined by

’:]Q

LW [1Prty =k |x) s,

e exp (k),X>) )ﬂ{yik}
ﬂ(zl op (O] )

G.Metzler (ICOM - ERIC) Ensemble Methods Fall 2024 29 / 159

m

B
Il
—
-.
—

::]Q

k



Basics in Machine Learning

Regression Models XXIV

And the negative log-likelihood ¢ can be written as

q v ex (W(k)>X>
YW, 8) = — Z:: 2 Liy=r I (Z?_lpe)((p (<w<“,)><>)> W

k=1 i=1

The estimation of the parameters works exactly the same as for the binary
case, we usually use the Newton-Raphson algorithm.

Let us finish with a last type of regression model which is called Kernel
Regression or Non-Parametric Regression.
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Basics in Machine Learning

Regression Models XXV

Kernel Regression

The linear and logistic regression presented in the previous sections are
both parametric models, i.e., we need to learn or estimate the parameters
(depending on shape of the model) in order to make predictions.

Non parametric models also exist where we do not need any parameter.
The predictions for a new instance will only be based on the existed
instances and, more precisely, on the characteristics of its most similar
ones.
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Basics in Machine Learning

ression Models XXVI
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Basics in Machine Learning

Regression Models XXVII

The use of linear model to estimate the values of y does not seem
appropriate, but how a non parametric model will perform in this case ?

Let us introduce a first simple model. To estimate, the y associated to x,
i.e., y(x), we simply consider the mean values y; = y(x;) of the neighbors
of x. Thus, the estimator h is given by :

_ ZZ:l K)\(Xv Xz)yz
oo Ka(x,x;)

where, in this case K (x,x;) = 1 if this distance ||x — x;|| between x and
x; is lower or equal to A and 0 otherwise.

h(x)
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Basics in Machine Learning

Regression Models XXVIII

[llustration of the estimation made by a non parametric model when
KA(X,XZ') = ]l{HX*Xz‘HSA} with A = 8.
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Basics in Machine Learning

Regression Models XXIX

0.0
I

-0.5
I

-1.0
I

[llustration of the estimation made by a non parametric model when
1 1
K\(x,x;) = —— - — X ith A\ = 2.
) = b (g llx = xil) ) w
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Classification and Regression
Trees
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Basics in Machine Learning

Classification and Regression Trees |

Decision trees were introduced by [Quinlan, 1986] but the currently used
version of Classification and Regression Trees algorithm was well
introduced by [Breiman et al., 1984].

Decision trees consist of a series of rules that are successively applied to
the dataset in order to separate the data into two or more groups. Here,
we will only focus on binary decision trees, i.e. when a decision rule
separates the data set in exactly two different sets.

The nature of the tree depends on the output space ) :

e when )Y C R, we talk about regression tree,

e when Y = {—1,1}, we talk about classification tree.
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Basics in Machine Learning

Classification and Regression Trees Il

Age <25
Toy dataset
Yes [ No
Age | Height | Sex
20 175 F
32 | 180 | M @
40 175 M
28 172 M Height < 170
22 165 F
0 | 160 | F Yes | No
70 | 170 | F | |

CO O
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Basics in Machine Learning

Classification and Regression Trees IlI

Such an algorithm is able to (non linearly) separate a complex dataset
when using a large number of decision rules. To see how the decision rules
are chosen, we define a criterion to optimize.

For this purpose, we need two tools, a metric which evaluates the quality
of a node and a measure of improvement after a split, called the
gain [Safavian and Landgrebe, 1991, Rokach and Maimon, 2005].
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Basics in Machine Learning

Classification and Regression Trees IV

The kind of used metrics depends on the type of tree we are dealing with.

A list of such metrics are provided by [Rokach and Maimon, 2005] among
which :

e the Variance, used for regression trees :

where my denotes the number of examples in the node N and 3 the
average value of y; in the node.
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Basics in Machine Learning

Classification and Regression Trees V

e the Entropy which is mainly used in physics in order to quantify the
mess in a physical system, it is defined by

Enty = — Z]Lﬂ pjlogs(pj), where p; is the proportion of examples
of class j in the node N.

e the Gini impurity used in classification tree. It measures the impurity
of a node by computing the proportion of each classes present in the

node. For instance, in binary classification, the Gini impurity G of a
node N is defined by :

Gn = Z pi(1=p;) =2p1(1 = p1), (2)

where p; denotes the proportion of examples being in class j.
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Basics in Machine Learning

Classification and Regression Trees VI

The next step consists in choosing the optimal rule to split the dataset into
two nodes. This rule is chosen in order to minimize the Gini impurity at
the end of the tree. For this purpose, we define the Gini gain I" as follows :

[ Ni| | NR|
I'=Groot — | ———G —G
root <|NL +NR‘ Ny, + ‘NL +NR‘ Ngr |»

where Gy, and G, denote the Gini impurity of the node on the left,
respectively on the right.
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Basics in Machine Learning

Classification and Regression Trees VII

0.5 e e s
0.4
> | Y N
k=
S 0.3
o
E
§ 0.2 1
©)
0.11 m— Gini impurity
® Nodes Gini values
0.0 - ® Root Gini value

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of data in a given class
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Basics in Machine Learning

Classification and Regression Trees VIII

The arrow between the two dashed lines represents the Gini gain I'.

On this figure, we also see that the Gini function is concave.

This concavity ensures the positiveness of the gain by the Jensen
Inequality [Jensen, 1906] so that each split leads to a lower classification
error.

Furthermore, at each step, we choose the feature and its corresponding
value which maximizes the gain I'. The decision rule is then applied and
the node is separated into two different nodes until getting pure leaves.
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Basics in Machine Learning

Classification and Regression Trees IX

In practice, it is always possible to lead to such perfect leaves. However,
building such trees might tend to over-fitting and bad performance in
generalization. To overcome this issue, we usually use a pruning strategy
which can be controlled by parameters :

e the size/depth of the tree,

e the size of a node : minimum number of examples required in the
node to make a new split,

e the size of a leaf : minimum number of examples in both leaves after
a split,

e a threshold on the gain : the minimum value of gain required to make
a new split.
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Basics in Machine Learning

Classification and Regression Trees X

Let us take another example, using the same dataset where we aim is to
predict the age of the person according to its height using our regression
tree.

We first compute the variance at the root of our tree. It is equal to
Vary = 245.71. We now have to find the best binary split such that the
gain, defined by :

[Nz |
‘NL + NR‘

|NR|

Vary, + ———Var ,
Nr |NL+NR‘ NR>

I'=Vare — <

achieves the highest value.
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Basics in Machine Learning

Classification and Regression Trees XI

For this purpose, we are going to test each possible value of the variable
height and compute the associated value of I'. The results of such
computations are provided in Table 1 and show that, among the three
tested splits, the best one is obtained using a threshold equal to 170.

Threshold | [Ng| | |[Ng| | Vary, | Varn, | T

169 2 5 81 297.6 10
170 3 4 392 52 48
172 4 3 342 67.56 | 21.33

Table — Values of the gain I', in terms of variance, according to three different
thresholds. An instance with a value lower or equal than the threshold will be put
in left node, otherwise, in the right one.
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Let us go a little bit further!
A study of the error in
Machine Learning
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An Error Study

Error Decomposition |

Performance and Complexity

We have seen the importance of the balance bias - variance in our learned
model,the aim is to find a model with a good performance on the training
set (a low bias) which has a low variance in order to perform well on
unseed data.

Risk

‘underfitting
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An Error Study

Error Decomposition |l

The example of the regression

We are going to explain where this bias-variance tradeoff comes from in
Machine Learning and how it will be used in to order to build stronger
models.

For thr sake of simplicity, we will consider the regression case and the
following model :

y = f(x)+e,

where f is an unknow function that we aim to estimate using our data.
These data can present some noise which is modeled by a random variable
¢ following a gaussian distribution in our model.
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An Error Study

Error Decomposition Il

Suppose that we have a dataset with which we have a learned a model h

who tries to approximate f. We aim to estimate its generalization
performances using the mean square error criterion, i.e.,

El(y — h(x))?].

The regression models assumption also imply that :
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An Error Study

Error Decomposition 1V

Proposition 3.1: Error Decomposition

We consider the following data generation model

y=f(x)+e,

Using a sample S = {(x;,v;)}.-, generated by the previous, we learn
a hypothesis h which is an estimator of f. The generalization error
of h according to mean squared error can be written :

E[(y — h(x))*] = (E[h(x)] — f(x))* +E | (E[A(x)] — h(x))*
+E[(y — f(x))?]:
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An Error Study

Error Decomposition V

Proof

We are going to use the Konig-Huygens which says that for all random
variables which has a variance, we have :

E [(X —E[X))?| = E[X?] - E[X]%

We develop the expression on the left :

E[(y — h(x))’] = Ely® — 2h(x) + h(x)?],

= E[y?] — E[2yh(x)] + E[h(x)?],
~—— —
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An Error Study

Error Decomposition VI

=E[y* +E {( y — EM)Z} —2E[y| E[h(x)]

FEh(x)2+E [(h(x) . E[h(x)]ﬂ ,

= F)?+E |(y — F(x))°] = 2f(x) Elh(x)]
+E[h()]? +E | (h(x) — EIL)])’]

= (E[h(x)] - [(x))* + E |(E[h(x)] - h(x))’]
El(y — £(x))?.
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An Error Study

Error Decomposition VII

So more than a simple bias-variance tradeoff, we can see that our error
can be divided in threee different parts :

m the square of the bias of the learner h : the difference of the mean
value of h over all the data distribution and the f values.

m the second term represents the variance of the learner h, so how h
values vary when the sample changes. In other words, it represents
the stability or the sensivity of the model to the data.

m the thrid term is the bayes error, it does not depend on the data, nor
on the model.
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An Error Study

Error Decomposition VIII

Bayes Error

0.3

0.2

—4 -2 2 4

This is the blue area under the intersection of both curves. this quantity is
hard to estimate in practise.
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An Error Study

Error Decomposition IX

Exercise

Let us consider two densities di and do defined as below and for which the
representations are given in the previous graph :

3 3 7
iy = §x2+x when 0 < o < 1, and  dy = 1 whenfgzrgi,
0 otherwise. 0 otherwise.

1. Show that we effectively have two densities.

2. Determine the bayes error associated to this two densities.
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An Error Study

Error Decomposition X

This error cannot be optimized and completely depends on the data
distribution. Thus, in reality, what ware trying to minimize in Machine
Learning, in order to define a good algorithm, is called, the excess of risk :

El(y — h(x))*] = El(y — f(x))’].

Let us focus on this term a little bit in order to draw the link with

generalization bounds (we are going to provide an example in this
presentation).
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An Error Study

Error Decomposition Xl

We now suppose more generally that the observations are sampled from a
joint distribution D = X x Y associated to a measure . We also consider
a loss function ¢

(:YxY >R,

which quantifies the cost of the error, of a hypothesis h, by predicting
h(x) when the true value is y. The function or hypothesis h we are looking
for is the one that minimizes the expected error over D, i.e.

R = B h6) = [ o)
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An Error Study

Error Decomposition XII

Keep in mind that, in practice, the hypothesis & is learned on a finite
sample. We now assume that we minimize the risk over a
function/hypothesis space . If we denote by R* the Bayes risk, we can
decompose the Bayes regret as :

R(t) - R* = (R() - inf R(9)) + inf Rg) ~ "

e The first term is the excess of risk of i with respect to the best
function in the hypothesis space H.

e The second term is the approximation error, i.e. the smallest excess
of risk we can achieve using a function in . This is bias term which
does not depend on the data but only the hypothesis space H.
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We will now draw the link with the generalization bounds and go little bit
further by bounding the excess of risk.

If we denote by h the hypothesis obtained by minimizing the empirical risk
over H using a sample S :

h € arg min Rg(g).
gEH

We will also denote by hy; the minimizer of the risk R over the hypotheses
space H, i.e.

hy = arg minR(g).
geEH
The excess of risk : R(h) — in{t R(g) can be rewritten as the sum of
g€

three terms :
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R(h) = R(hy) = (R(h) = Rs(h)) + (Rs(h) — Rs(hy))
+ (Rs(hy) — R(hw)),

where

e (R(h) —Rg(h)) is the difference between the true risk and the
empirical risk of the hypothesis h. This quantity is the one we are
interested in, when it comes to study the generalization of the
algorithms.

e (Rs(h) —Rs(hy)) is a non positive term by construction.

e (Rs(hy)— R(hy)) is easier to control as it involves a deterministic
function and the law of large numbers applies.
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However, the first term can be bounded as follows :

R(h) — Rs(h) < sup

geM | (xy)~D m

Since this quantity also bounds the third term, we immediately have :

R(h) = Rg(h) <2 sup

B (U909, )] - - D" Ugxi),u)].
=1

This latest bound can be seen as variance term which increases with the
size of H. If the size of H is big we can achieve a low empirical risk,
however, the expected risk has higher chance of being high.

A question can arise now :
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How can we define the size of hypotheses space 7 ?

When H contains a finite number of hypothesis, the answer is clear and
the size is simply the number of hypothesis in the set. But when it is
infinite, it exists several measures to evaluate H size as the Rademacher
complexity.

The Rademacher complexity [Bartlett and Mendelson, 2003] has been
introduced to measure the complexity of a set of

hypotheses [Koltchinskii and Panchenko, 2000]. Informally, it measures
how the set of hypotheses is able to fit noise in the dataset.
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Définition 3.1: (Empirical) Rademacher complexity

Let H be a family of functions and S = {x;}/, a fixed sample of size
m. Then, the empirical Rademacher complexity of H with respect to S is

defined as :
Res(H sup — oih(x;)| ,
( ) Z [he?—t m Z ]
where o = (01,...,0,,) is a vector of Rademacher random variables, i.e.

random variables taking values in {—1,+1} both with probability 1/2.
The Rademacher complexity is the expectation of the above quantity on
the distribution D of the data :

Rn(H) = _E [Rs(H)].

S~Dm
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This measure increases with the size of H and decreases with the sample
size. Thus using this measure we have

E IR(h) —Rs(h)]

S~Dm
1 m
<2 E |sup E [lg(x), - — g(x:),y:)l ],
o 500 | B () m; (9 )y)]
< 2R,,(H).
Therefore,

E [R(h) - R* < inf R(g) — R* + 4R, (H).
o B, [R(h) =R < inf R(g) + 4R (H)
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This result illustrates a little more generally the bias-variance trade-off for

risk minimization. It makes explicit the link between complexity and
sample size.

It remains to explain where the following inequality comes from

m

E (g6 p)] — - > glxi), )
=1

(va)ND

E

su
S~Dm b

geH

] < 2R, (H).

We are going to show this inequality using the symmetrization technique.
Concretely,

1 m
E sup | E [lg(x),y)]—— ) Lg(xi),u)||,
S~D™ | g |(x,y)~D m; e
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= E sup E l ZE(Q(X;)"U;)] - l ZE(Q(XZ)MU’L) )

= SuDm g S/ ~Dm m <

— E |sup | E Zﬁ(g(XQ)zyé)—;Zf(g(xi),yi)] :

1
= SNDm QGH S/N'DnL m ‘

= E |sup| E 125(9(%),%)f(g(xi),yi)m,

_SNDW geH S/ ~Dm m 4
|
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where the last inequality uses the fact the supremum of mean values is
lower than the mean values of suprema. We now introduce our
Rademacher variables o;, « = 1,..., m and notice that

E

su
8,8/ ~Dm b

geEH

m

7711 > o (Ug(x)), y) — Lg(xa), u0)) “

< E sup
S,S'~D™ o geH

=1

This is due to the fact that the data are i.i.d.. Furthermore, this inequality
holds for any choice of .

Finally,
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mzaz yz) E(Q(Xz%yl))u )

]
m ]’

E P
S,8'~Dm o gEH

m

%memw

i=1

< E sup
S~Dm Kes QEH

%Zm%@MD

1=1
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It exists other measures to express the capacity of the space of hypothesis
H such as the VC-dimension [Vapnik and Chervonenkis, 1971] which are
more easy to compute when we are dealing with linear classifiers.

But we are not going to deal with such a measure, we rather come back to
generalization bounds and provide a first bound using this complexity
measure.
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Using the Definition 3.1 we can provide a first generalization bound using
this complexity measure.

Théoréeme 3.1: Rademacher Generelization Bound

Let H our class of hypothesis associated to any loss function ¢ map-
ping from X x ) to [0, 1]. Then for any § > 0, with probability at
least 1 — 0 over the draw of an i.i.d. sample S of size m, each of the
following holds for all h € H :

R(h) < Rs(h) + 29, (H) + \/k’g;;/‘s), and
R(h) < Rs(h) + 2Rs(H) + 3\/1"%;/‘”.
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Proof

Let us consider a sample S = {(x;, y;)};~, random drawn from D. For any
h € H, we denote by Rg(h) = ( E  [6(h(x),y)] the empirical risk

X,y)~ST
associated to a loss £ and hypothesis h.
The proof consists in applying McDiarmid's inequality to the function @
defined on any sample S by

&(S) = 21612 R(h) — Rs(h).

If we now consider S and S’ two samples differing by exactly one point :
Zm = (Xm,Ym) € S and z,, = (x},,,y,,) € S". Then, since the difference
of suprema does not exceed the supremum of the difference, we have
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B(5)-B(S") < sup (Rs(h) — R (1)) = sup “Zm) —LAzm)) o L
heH heH m m

1
Similarly, we can obtain @(S’) —&(S) < — and we can bound the absolute

m
value of the difference |®(S") — @(S)|. Then, by McDiarmid’s inequality,
for any 6 > 0, with probability at least 1 — §/2, the following holds :

log(2/9)
e S

Our next step consists in bounding the expectation on the right-hand side
of the previous inequality
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heH
= E S E !/ h - h
B, s (B, R - Rem] )]

_ o (2N~ /
= sorpm |5 (m;f(z» é(zl))],
1 m
— E — ) i) ; ;
o [225 (m;(f(f(Z) ﬁ(%)))]
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< E
S'~D™ o

1 ,
o (5 Sy
1 m
()|
1 & ,
-2, g (G0

= 20R,,(H).

+ E
S~D™ o

The sketch of the proof is exactly the same as the one provided when
sutyding the excess of risk.
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Using again McDiarmid's inequality, we get

log(2/9)

R, (H) < Rs(H) + /25

Thus, with probability at least 1 — ¢ we have :

B(5) < 25(H) + 3,/ &)

2m

And thus, using the defintion of

R(h) < Rs(h) + 29, () + | 2&L/0)

2m
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It exists other tools to develop such generalization bounds that are based
on different domains of Machine Learning :

e for instance, a complexity measure called the VC-dimension can used
instead of the Rademacher Complexity.

e we can also directly evaluate the complexity of the space of
hypotheses using the hyper-parameter ahead the regularization term.

m the use of the PAC-Bayesian theory is also an interesting tool to
develop generalization guarantees as it is well dedicated to the study
of ensemble algorithms/methods.
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From now on, all the presented algorithms we are considered as simple
models because they were studied alone, they were more or less complex
for our both regression or classification tasks.

But we can wonder :

e Why using only model or one learner/hypothesis ?

e Would it be interesting to combine several of them ?

Thinking about the linear models may provide a first part of the answers
as they are to much simple to solve complex problems.
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A naive rule

Let us imagine we want to create K models using a sample

S = {(xi,yi) };i~, of size m. We can train an hypothesis hy, for k from 1 to
K using the same training sample S for each k.

After that, we can combine the different hypotheses into a single one,
noted Hy, doing the average to take our final decision :

e for a regression task, the predicted value will correspond to the mean
value over all prediction made by hypotheses hy, i.e.
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e for a classification task, we can apply the same rule. However, instead
of taking the mean value as the output of the combined classifier, we
rather take the sign of this mean value as the output, i.e..

K
) 1
Hg (x) = sign K ; hu(x)

In the case where the hypotheses hj return a value that is —1 or 1,
our hypothesis Hy can then be seen as an majority vote with equal
weights.

On the contrary, if the hypotheses hy return real values, then we can
imagine that it is a weighted majority vote.

G.Metzler (ICOM - ERIC) Ensemble Methods Fall 2024 82 / 159



Ensemble Methods

Naive Approaches |V

Although this rule is simple in practice, it is not very useful.

Indeed, recall that if all our problems are convex, there is a good chance
that all the hypotheses hj are similar if we use the same training set each
time.
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Based on Hyper-parameter

One could then be tempted to vary the hypotheses by imposing different
hyper-parameter values for each hypothesis, e.g. one could impose K
different hyper-parameter values in order to obtain K different models.

Again this solution is not satisfactory :
e it may lead to hypotheses with low predictive power

e using such a process would call into question the cross-validation
process presented earlier which allows to optimize the values of these

hyper-parameters
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We are going to see that, even if our algorithm does not depend on
hyper-parameter, it is possible to improve it using a single training set S.
These two methods are known as Bagging and Boosting.

These two methods act differently on the performance of algorithms or
more precisely on the different components of the error of an algorithm.
We will also present a third one, more general which also consists in
combining several algorithms. But before presenting these approaches, let
us motivate the use of several models.

G.Metzler (ICOM - ERIC) Ensemble Methods Fall 2024 85 / 159



Ensemble Methods

Naive Approaches VII

A theoretical Analysis

We will now try to explain why it is interesting to combine several model
To do this, let us consider data (x,y) from a distribution D where x s the
feature vector and y is the response variable or the value to predict.

In a regression setting, we will then learn a hypothesis & which aims to
predict the value y according to x. For the sake of simplicity, we suppose
there exists a true function r such that r(x) = y for all

(x,y) ~ D =X x ). We also consider a training set .S of size m.
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Remember that we aim learn a set of hypothesis hy, t =1,...,T.
Thus for any instance x and any hypothesis h;

hi(x) = r(x) + ei(x),

where £;(x) is the error between the predicted value and the true value of
the function at x.

Keep it mind that, in a regression setting, the error we consider is the
MSE, i.e. the mean squared error.
Thus the generalization error of a single hypothesis h is defined by :

E [(h(x)—r(x))ﬂ = E [5(}()2].

x~X
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. o 1 :
And the generalization error of our averaged classifier Hx = T Zthl hy is

x~X x~X

E |(Hr(x)— T(X))Q] = E (; > hi(x) - T(X)> )

- ) - 9
= X@X (T ZEt(X)>

Let us suppose now that our error ¢; are centered (mean value equal to 0)
and uncorrelated. We can rewrite the previous expression as :
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T 2

(1 & 1 &
- 2| (r25e) (F o)

| Z
T2 ZXLEX [et(X)Q] ’
t=1
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E[(Hr(0 - r(x)?] = 7 (; > E {st<x>2]> .

x~X
t=1

This last equation shows that the generalization error of a combination of
hypothesis is just the average error of the set of the T" hypotheses divided
by T'.

Note that, in practice, the assumption of uncorrelated error is essentially
wrong because several hypotheses h; are learned using similar samples .S;.
However, we can still show that the error of bagging hypotheses is no more
than average error of the set of hypotheses h;.
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In fact, for any random random variable X, we have E[X?] > E[X]? (this

a consequence of Jensen’ Inequality) Thus, taking X = &;, we immediately
have :

Let us know go on with a first ensemble approach : the bagging procedure.
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Bagging

It is a way to combine models that have good performances on the
training set. We have previously seen that we can decompose our Bayes
Regret into the sum of two terms

R(h) —R* < inf R(g9) — R* + R(H).
geEH
What will interest us here is more precisely the variance term in the error
decomposition. This value will show us how sensitive the algorithm is to
the variation of the training set, if this value is low, our algorithm will be
little sensitive to variations of the training set.
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We will learn a polynomial regression model of degree 15 on different data
from the same distribution. Each model is learned on a training set of size
30.

In total, we learn 10 different models which are represented on the graph
on the left.

We note that the variance of the models is very important, i.e. for the
same value on the abscissa, the models return very different values on the
ordinate, so it is very sensitive to the training data.
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We notice that this graph shows much less variation around the true
distribution of the data. We have therefore succeeded in reducing the
variance by combining several models.
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In this example the models learned are on different data each time.

But in practice we have only one training set S.

So we have to find a way to create several training sets S}, from this set S.
This can be done using the Bootstrap method, which is a sampling
method based on a random draw.

How does it work in practice?

Let us consider of training set S of size m. To create a bootstrap sample
S of the same size m it will be necessary simply to carry out a draw with
replacement of m examples in the set S, i.e. we have the same probability
to draw each example in the set S.
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This sampling method will thus create diversity in the learned models.
Indeed, the sets S} being different, the hypotheses h; will focus on
different regions of the data space, because 5; contains different examples
and, sometimes, several times the same example.

Rate of examples in S that we will find in Sy, on average?

G.Metzler (ICOM - ERIC) Ensemble Methods Fall 2024 97 / 159



Ensemble Methods

Bagging and Random Forests VI

As one can then guess after this reading, bagging means bootstrap

aggregating : generate several samples and hypothesis and then you
aggregate the results.
It is summarized as follows.

Input: Training set S = {(x;,v;)};~,, number of model T’
Output: A model Hp
begin
fort=1,..,7T do
create a bootstrap sample S; of size m using S.
L learn a hypothesis h; using S;

1
set Hp = T Zthl h; return Hp
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Theoretical Analysis

We can conduct a similar analysis as the one presented in the previous
section.

1 . - .
Let us also denote Hr = T Zthl h¢ our bagging classifier used to estimate

(for instance) the output of a regression function y, i.e., Hp(x) ~ y.
Then, the average error made by the set of classifiers is equal to :

NX ~
XX yey t=1

-
1 1
2 o 1 1 2
Yy 23/T ;:1 he(x) + T ;:1 h(x) ] .

1ihf ]

= E
x~X,y~Y
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Using again Jensen' Inequality, we have

1 1
<T 23:1 ht(X)) < T Zthl h¢(x)?, so that

x~X y~Y T
1 & 1 & ’
> B |y —2y— -
2 Ay Yy YT zht(x) + (Tzht(x>> ;

1 <& ’
= XNX%N)) (Z/—Tzht(x)> )

= & w-Hr0y).
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This last inequality show that the error made, on average, by the bagging
classifier is always lower than the error made by a single classifier.

We can go a little bit further by studying the potential gain of the bagging
classifier. We can see that this gain depends on the difference of the two
following elements :

1 « P )
(T;ht(X)> ST;ht(X)a

which can be seen as the variance term associated to our set of classifiers
hy.
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If the variance is important, meaning that the difference

1 1 2
T I he(x)? — <T I ht(x)> is big, then the gain will be

important.

It shows that, it is more interesting to use a set of base classifiers that
have a high variance but a low bias in order to achieve a good a bagging
classifier, which is exactly the case of Decision Trees. This is why it is
interesting to combine them using this procedure to lead us to the
Random Forest algorithm.
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Random Forests

When we introduced decision trees, we said that the size of the tree, i.e.
its depth, depends on the data. The tree will thus grow until we obtain
pure leaves.

If we go back to our error decomposition story, the (deep) decision trees
thus form hypotheses with a low bias (an error rate that decreases with
depth) but with a high variance. They are very sensitive to the data and
the structure can vary greatly from one training set to another.

In fact, we find ourselves in exactly the same case as in our regression
example. We will therefore proceed to a combination of tree models in
order to reduce the variance of the trees while maintaining their predictive
capacities using bagging. This combination of trees by bagging gives rise
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to the random forest algorithm founded in the early 21%"
century [Breiman, 2001].

The idea is then to build several trees based on different training sets Sy
that are drawn randomly from S with replacement, i.e. using the bootstrap
procedure and to combine the results of the different trees. But the random
forest algorithm (presented after is) in fact more sophisticated than that.
It is based on the principle of double sampling : sampling both on the
examples and on the variables.
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Input: Training set S = {(x;,i)};~;, number of trees T', a sample of
size m’ and a number of features p’

Output: A hypothesis Hp

begin

fort=1,...,7T do
Create a bootstrap sample \S; of size m’ using S.
Build a decision tree h; where at each split, a random
subsample of p’ features are used to split the node.

1 o
Set Hp = T ZL’:] h return Hp
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This double sampling will make it possible to create a diversity at the
sample level and features level (can be interesting for those who wants to
study the Multiview Learning)

Compared to the standard bagging algorithm, note the boostrap sample is
of size m’ < m and that the number of used features at each node of a
given tree is less than the dimension d of the data. Note that it is not
mandatory to have m’ < m, it only give the possibility to have a faster
learning procedure.

From an algorithmic point of view, it allows to learn the different trees
faster : you have less examples and the splitting procedure is applied to a
less number of features.
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The presented algorithms is the simplest one. It is not rare to give different
weights to the trees according to their performance, remember, this our
weighted majority vote.

Decision Trees and Random Forests are used in many applications such as
finance, security or social sciences in general. These algorithms have the
advantage to be easy to build and their decision is easy to understand
(explainable Al), you just to follow the road of the data in the tree.
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Our of Bag Error (OOB)

The bootstrap procedure means that we don't use all the data to learn a
hypothesis. More precisely, given a sample S of size m and if we consider
that we draw any example x € S with the same probability 1/m, then the
probability of not selecting an example in m draws is equal to (1 —1/m)™.
If the sample size m is high enough, this figure tends towards e~! ~ 0.37.

It means that the bagging procedure do not use approximately 37% of the
data when a learning a base classifier, thus approximately 63% of the data
are used.
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The remaining examples are called Out Of Bag data, they are not used to
train the classifier but rather to tune the hyper-parameters of the model by
estimating their generalization capacities.

The Bagging is then a procedure which is a mainly interesting to
e achieve an ensemble classifier with less variance,

e train a stronger model with higher generalization capacities with
fewer resources (from a an experimental point of view).

As for simple decision trees, random forests can be used for both
regression and classification as the main difference lies in the way the
different trees are built, i.e., the used loss function.
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Measuring the importance of the variables

The way to measure the feature importance as been introduced at the
same time as the Random forest algorithm [Breiman, 2001].

Remember that, to assess the quality of a split in decision trees according
to a feature 27, we measure the difference of entropy at a node N,
AFEnty after and before the split due to the variable X7 (we explain it for
binary decision tree for the sake of simplicity) :

AEntyn(X7) = Ent(pyn) — Ent(py, X7),

where,

C

Ent(pn) = — Y _ pnxlogs(pak)
k=1
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and

Vi |Nr|

Ent(pn, X7) = ] ZPNLkIng(PNL, )— ] ZPNR,RIng(pNL, )

In the previous expression, we use N7, and Ng to denote the two leaves
(left and right) obtained after the split of the node N.

To measure the importance Impj of the variable X7, we measure the
mean value of AEnty(X7) over the nodes NV where X7 is used to split
the node

T Nt
Imp’ = 7 Z Z AEntN XJ)H{X is used for split}>
: N:
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where NV; denotes the total number of nodes for ¢-th tree and 1" denotes
the total of trees.
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Setting

Let us introduce to definitions first of strong and weak learnability that are
given in the context of classification, where the boosting is mainly used.
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Définition 4.1: Strong Learnability [Mohri et al., 2012]

A concept class C is said to be (strongly) PAC learnable if there
exists an algorithm A and polynomial function poly such that for
any ¢ > 0 and § > 0, for all distributions X and for any tar-
get concept ¢ € C, the following holds for any sample size m >
poly(1/e,1/6,d, size(c))

SNIF;m [R(hg) <e] >1-4,

where hg is the hypothesis returned by A when trained on S. If A
further runs in poly(1/e,1/4,d, size(c)), then C is said to be effi-
ciently PAC-learnable.
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In this definition, a concept c is a function from X to ) that reach a
specific target. As an example, a concept may be the set of points inside a
triangle.

A concept class is a set of concepts we may wish to learn and is denoted
by C. This could, for example, be the set of all triangles in the plane.

According to the previous definition, a concept class C is thus
PAC-learnable if the hypothesis returned by the algorithm after observing a
number of points polynomial in 1/¢ and 1/§ is approximately correct
(error at most ¢) with high probability (at least 1 — 9).
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Définition 4.2: Weak Learnability [Mohri et al., 2012]

A concept class C is said to be weakly PAC learnable if there exists
an algorithm A,~v > 0 and polynomial function poly such that for
any 0 > 0, for all distributions X and for any target concept ¢ € C,
the following holds for any sample size m > poly(1/6,d, size(c)) :

1
P e >1-—
S~ D™ [R(hs) ) 7] = %

where hg is the hypothesis returned by A when trained on S. when
such an algorithm exists, it is called a weak learning algorithm, a
weak learner or a base classifier.
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Note that the difference between the two definitions is based on the error
of the hypothesis hg.

In the first one, we require this classifier to achieve an error of at most &
for a sufficiently large sample m(¢).

In the second one we just want the same classifier to be slightly better (of
a parameter v > 0) than the random classifier.
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Strong classifiers :

e Decision trees

e Over parameterized neural networks
Weak classifiers :

e Small decision trees with a depth of one or two

e Linear classifiers as linear SVM when the problem is non linearly
separable
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If bagging has worked with strong classifiers, boosting will work with weak
ones. It will try to combine them in order to build a strong classifier, but
the way it works is different from the bagging procedure. Instead of
building bootstrap samples, we will modify the data distribution. This is
the aim of the Adaboost algorithm.
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Presentation of Boosting

e We are going to learn a sequence of (h;);en as it has been done
previously, but the concept of "different” has not the same definition.

e Assumptions are no more independant, i.e. there is no more possibility
to learn them in parallel because they will be learned iteratively.

e The aim is to learn a strong model using a sequence of weaker ones
where the aim the weak learner hyy 1 is to focus on the examples
missclassified by hy.

e This will be done by reweighting the examples at each iteration.

Adaboost [Freund and Schapire, 1999] which iteratively focuses on
examples difficult to classify.
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Adaboost

G.Metzler (ICOM - ERIC) Ensemble Methods Fall 2024

Input: A learning sample S of size m m,

T models
Output: A model Hy = ZLO ahy
begin
Uniform distribution w®) — -
niform distribution w; =

m
fort=1,....,T do
Learn a classifier h; from an algorithm A
compute the error ¢; of the algorithm.
if &, > 1/2 then

| Stop
else
1 1—¢
C t =-1 -
ompuea() 21< El )
0 _ g t=D EXP(eyihe(x:))

Set Hy = Zz-:[) ahy
| return Hp
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Details

At a round t, the i-th training samples has the weight wl(t). Fort =1, all
the training samples have the same weights equal to 1/m. A hypothesis h;
is learned and we can compute its classification error &,

£t = Zwl('t)]l{m(xi)yi<0}

i=1

Using this value, we can compute the weight of the learn classifier oy :

11 1—875
oy = —In
t 2 &t
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Keep in mind that the idea is to learn a hypothesis H7 that be expressed
as a linear combination of weak learners h;. The better the weak learner,
the greater the weight.

The remaining of the procedure consist in finding a good reweighting
function of the training samples such that, during the next round, the new
classifier hyy1 is able to correct the mistakes done by the classifier h;.
This is done using the following update rule :

(t+1) w(t)eXp(*Oétyiht(Xi))

w . =
(2 )
Z

where Z; is normalization factor which ensure that the sum of the weights
is equal to 1.
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Decision boundaries at t = 0 Decision boundaries att = 1 Decision boundaries att =2
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Decision boundaries of final classifier
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Theoretical Analysis

Proposition 4.1: Theoretical bound Adaboost

The empirical error of the classifier returned by Adaboost verifies :

1
Furthermore, if for all t € [1,T], v < <2 — 5t>, then :

Rs(Hr) < exp(—2’yQT).
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Proof

First, we recall that the exponential function is an upper bound of the
indicator function, i.e.

V(va) ﬂ{yh(x)<0} < exp(fyh(x)).
We can then upper bound the empirical risk Rg(Hr) :

1 m
Rs(Hr) = — > iynex)<op
=1

IN

1 m

- ZGXP(—%HT(X@))-
i=1
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We can now express this last sum using the normalization factor Z; and

the weights wgtﬂ). Indeed, we have :

WD o ® eXp(_Oétyiht(Xi))’
) 7

y exp(— Zizl Oéshs(i'?i))

B 1
m Hizl Zs

Thus, the empirical risk can be upper bounded as :

Rs(Hr) < -3 exp(—uHr(x),
i=1
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A
| —
3
—
N
g/\
B

=1 t=1

IA
e
N

We will now focus on the normalization factor and see how we can write it
as a function of the classification error ¢; for all t € [1,T7].

thzw exp(—ouyihi(xi)),

— Z w,gt) exp(—ay) + Z w,gt) exp(ay),
i:yiht(xi)zl i:yiht(xi):fl
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= (1 —¢e¢) exp(—ay) + erexp(ay),

1—
1—8151/ +5ﬂ/ €t
2+/¢e (1*815

As the empirical risk Rg(Hr) is upper bounded by the product of the
normalization factors, we directly have :

Rs(Hr) < Zy,

=

1

-+
I

IA
=
[\

Et(l — Et),

i
I
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<o [2(3-) .
< exp [—2; (; — et>2]

This ends the first part of the proof.
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1
Furthermore, if for all ¢, v < <2 — 5t> :

Rs(Hr) < exp | -2 (; -~ st>2] :

t=1

IN

S
exp —2272],
t=1

< exp [;2T72] .
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We did not explain previously where the expression of a; comes from, but
the answer is in the proof. Indeed, it is chosen to minimize the upper
bound of the empirical error. Thus it is chosen to minimize the function :

p:a— (1 —¢)exp(—a) + e exp(a).

This function is convex as a convex combination of two convex functions.
So, it reaches its minimum for a single value ay.

v@(al» = 07
—(1 —e¢)exp(—ay) + erexp(ay) = 0,
(1 —er)exp(—ay) = erexp(ay),
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1—Et

erexp(2ay),

1 <1_5t >
o = —In gt |-
2 Et

Note also that the proof is available not only for a binary output h but
also for type of hypothesis for which the output is in the range [—1, +1].

€t
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To finish

e A simple algorithm to use with good guarantees in terms of
convergence.

e Possibility to extend its study and measure its generalization
capacities.

e We can draw a link with a gradient descent algorithm (coordinate
gradient descent)

Before going on with other boosting strategies, we will present a last way
to combine models called stacking.
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Stacked Generalization or

Stacking [Wolpert, 1992, DZeroski and Zenko, 2004] is another ensemble
methods which works rather differently from bagging and boosting.
Although the idea is always to combine models in order to optimize
performance, stacking is a kind of meta-model that will be learned with
the help of several sub-models.

The differences between the two previous procedures are as follow :

(i) all the models can be different (for instance we can combine an SVM
algorithm with decision tree) and they are learned using the same
dataset ;

(ii) the weight of each model is not learned iteratively.
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All the models are learned independently and a meta model is then used to
learn the optimal weight to assign to each base learner.

Its architecture involves at least two different learner to be used and we
thus have two different steps in the procedure :

1. learn a set of base learner on a training data,

2. using the predictions made by each model as new features for the
meta-model which will then learn a good combination of these
predictions.

If each sub-model h; is working with the initial features x, the meta-model
is working with the predictions of each sub-model, i.e., the features of the
metal model are (h1(x), ho(x), ..., hp(x)). Note that we dot specify the
output of h; and it can be a real value, a binary output, probability, etc.

G.Metzler (ICOM - ERIC) Ensemble Methods Fall 2024 137 / 159



Ensemble Methods

Stacking Il

We can go a little bit further and learn what we call a Super
Learner [Van der Laan et al., 2007] which can be seen as a generalization

of stacking with k-fold cross validation procedure as depicted in the next
Figurel.
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1. Split data 2. Train each 3. Predict the outcomes in the

into V blocks candidate learner validation block based on the

corresponding training block
candidate learner

2
" | _Im [D/S/A| .. RF 4. Model selection and
Z obs fitting for the regression
v of the observed
— m (DA .. RF || v outcome onto the
=1 1 1 1 predicted outcomes
2 2 2 2 from the candidate
B N . learners
SN R . N CE S ,
Em v E(Y|z)
—lv ] v v v
L
21
— . [ m Josm] .. [#F] 5. Evaluate super learner
% by combining predictions from
each candidate learner (step 0)
with m(z;B) (steps 1-4;
0. Train each (6) (stop !
candidate learner on
entire dataset

Super Learner
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The procedure can be described as follows :

1. Split the training data into k-folds (as in a k-fold cross validation
procedure)

2. Train each base learner on k — 1 folds and use the remaining by
computing their outputs through each base learner.

3. Repeat the previous point by changing the validation fold until all
folds have been used as the validation one.

4. Use the new representation of the data to learn the parameters of
your meta-model.

5. Evaluate its performance on the test data.

1. This image was extracted from the Super Learner course, slide 17.
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Generalities

The Adaboost algorithm is based on the exponential loss, however, such a
loss is not suited for all settings and it is sometimes better to use other
losses depending on the model you want to learn or for a specific
application.

This motivation leads us to the presentation of a more general boosting
algorithm, the Gradient Boosting [Friedman, 2000].
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Unlike the well-known Adaboost algorithm [Freund and Schapire, 1999],
gradient boosting performs an optimization in the function space rather
than in the parameter space.

At each iteration, a weak learner h; is learned using the residuals (or the
errors) obtained by the linear combination of the previous models.

The linear combination H; at time t is defined as follows :

Hy=Hi_ 1+ oy (3)

where H;_1 is the linear combination of the first ¢ — 1 models and «; is
the weight given to the ¢-th weak learner.
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The weak learners are trained on the pseudo-residuals r; of the current
model. These pseudo-residual are given by the negative gradient, —g;, of
the used loss function ¢ with respect to the current prediction H;_1(x;) :

ri = —gi(%i) = — [W%;If{i(;(;)(i))}

Once the pseudo-residual r; are computed, the following optimization
problem is solved :

(h¢, o) = arg min Z(ri — ah(x;))?.

a,h i—1

Finally, the update rule (3) is applied.
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This algorithm has been first developed for classification and regression
trees, and most of the work and libraries such as

XGBoost [Chen and Guestrin, 2016] are using decision trees as weak
learners. The procedure is summarized as follows

Input: Initial hypothesis
Hy HOx;) =arg min> " l(y;,p) Vi=1,...,m
pER
begin
fort=1,...,T do
Compute pseudo-residuals :
Ol(yi, Hi—1(x4))

Yi = - ,Vi=1,...,m
! ()Htfl(xi) )
Fit the residuals : a; = arg niin S (5 — ha(x:))? to learn
a€R

the new hypothesis
Learn the weight of the classifier h,: :

ol =arg min Y1 yi, Hy—1(xi) + ahge (x;))
a€R+

L Update HL(XL‘) = HL,1<X,) + a"ha:(x;)

| return Hp
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Examples

Let us show what are the pseudo residuals for two different losses # : the
square loss for a regression task and the logistic loss for classification task.

e Using the square loss ¢, the pseudo residuals are defined by :

B 0l(y, Hi—1(x))
OHy_1(x)
Ay — Hy—1(x))?
OHy_1(x)
=2(y — Hi—1(x)).

<
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The pseudo residual is just twice the difference between the true value
and the predicted value (remember that this loss is mainly used in the
regression setting).

m Using the logistic loss ¢ (for classification), the pseudo residuals are
defined by :

_ 0l(y, Hi—1(x))

0H;_1(x)
_ Oln (1 + exp (—2yH;—1(x)))
0H;1(x) ’
2y

(1 +exp(—2yH;—1(x)))
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This is not the commonly used version of this loss that is used.
Because H;_1(x) s a real value, we rather pass this output in the
logistic function in order to get probabilities to belong in a given class.
In such a case, the pseudo residuals are given by :

Oy, Hyi (%))
OH, 1 (x)
~O0—yhn(o(Hi-1(x))) — (1 —y)In(1 —In(o(Hi-1(x))))
OH, 1 (x) ’

Nsql

=y —o(Hi-1(x)),
where o denotes the logistic function o(z) = (1 +e~%) "
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We can also draw a parallel between the gradient boosting algorithm and a
gradient descent algorithm.

This is more natural since the algorithm involves the gradient.

Here, the parallel can be drawn with the gradient descent with optimal
steepest descent
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Presentation of XGBoost

We consider a loss ¢ (we suppose the function is twice differentiable) and
the following optimization problem :

L

min > (i) + 5L+ 5 S (A0 (4)
=1

j=1

Az (12 ot
where 5L and B >_j=1(hy")* are two regularization terms used to control

the number of leaves and the weight of each leaf ft(j) for the learned tree
at iteration t.
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We recall that the models are learned in an additive manner, so let us
denote §(*=1), the predicted value by the first t — 1 functions hy, i.e.

gjgtfl) = S he(xi) = Hy— ().

Let us now study how the next model is learned. For this purpose, we
rewrite the quantity (4) to minimize as follows :

m B A L )
D e i Y ho(xi) + BL+ 5D (). (5)
=1

7=1
We only use the additive definition of the model.
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In practice, [Chen and Guestrin, 2016] only consider a second order
approximation of the function they aim to optimize. This second order
approximation is done with respect to the predicted value at the previous
iteration, i.e. Qzﬁhl).

We will denote by respectively g and f the first and second order
derivatives of the function £ with respect to 5(*~1). We can rewrite (5) as

follows :

m E
> [l + ot + 31| + 52+ 5 DGO
=1 =

0
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Remember that we aim to learn the function f; = (hij))j:lw.?L.
So let us consider a leaf j and denote by I; the set of index ¢ such that x;

falls in the leaf ;. Thus, using (6), the function 4" shall minimize the
following quantity V; for a given index j :

Vi=2. {g<xz->h§”<xi>+§<A+f<xi>><h£”<xi>>2 -

i€l
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This function is convex and the minimum is given by the solution of

Euler’s equation, i.e. the function f® for which the gradient vanishes
This solution is given by :

; > icr, 9(xq)
(4) i€l
ht] B _E :iEIj f(xi) - )\ (8)
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Example

Let us come back to our previous example where we have considered the
square loss and the logistic loss and let us see what the weights of the

leaves are when we use these two losses.

1
For the square loss £(5(*~ 1) = i(y — §=1)2_ The gradient g with

respect to the prediction is

ov
At=1)y AE=1)y — (n(=1)
95 = om0 ) =0 Y)-
And the second order derivative f with respect to the prediction is
0%
~(t—1) - v ~(t—1) _
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So the optimal value of a leaf hgj) is :

: (1)
hgj) _ ZiEIj g(xz) _ Zielj (yz Yy )
D ier, f(xi) + A PRI

Thus, when learning the first tree, with the assumption ngo) =0 for all 4,
we find that the optimal score in a leaf is equal to the average of the
instances values in the leaf. For subsequent iterations, the optimal score of

each leaf becomes the average of the pseudo-residuals.
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Let us now focus on the logistic loss

(54V) = i (pe") + (1 = ) (1 - pE)),
where p is the logistic function.
The gradient g with respect to the prediction is

or

§Dy = §D) = (p(gtD) —
95 = a0 = ) ).

And the second order derivative f with respect to the prediction is

2
O D) = p(E V)1 — p(e ).

F) = 270 D)2
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So the optimal value of a leaf hgj) is

h(J) . ZiEI_'j g(xi) - Zie]_i (p(g(t_l)) - y)
b D o)A A+ By, p ) (1= p(50 )]
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Back to XGBoost

Let us now focus on the splitting criterion. Optimal weights are found (8),
compute the optimal value V* of the loss by using (7) :

N Ziefj 9(x:) 1 Eielj 9(x)
V} = ZEZ] - g(Xi)Zigjj f(Xz) A + 5 ()\ + f<X7)> <_ Zielj f(Xz) ¥ /\)
(Zz’elj ‘J(Xz)>2 (Zielj Q(Xi))Q

1
B _Ziefj fxi)+ A "2 Dier, f(xi) X

1 (e )
T2 e f) N
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This formula is used to measure the quality of a leaf. It can be seen as a
generalized formula for Gini Impurity for any loss function. Using this new
measure, they define their splitting criterion, i.e. the gain associated to a
split, as follows :

2 2
1] (S 9609) (B 000) (o)’ |
2| Dier, i)+ A e, f(x) A D f(x) + A 7

where I = I, U IR for a binary tree and the parameter [ is used to control
the number of leaves.
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