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Part I
Mathematical background

The objective of this part is to give some reminders on the notions of convexity and
smooth convex optimization. These reminders are essential in order to understand certain
calculations, properties of algorithms but also the way in which solvers solve certain tasks.
For further details on convexity and convex optimization optimization, do not hesitate
to look at [Boyd and Vandenberghe, 2004].
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1 Linear Algebra and Convexity

This first part will rapidly introduce the mathematical tools required for the rest of the
presentation’ In this section we suppose that we work in a real vectorial space E of finite
dimension d.

1.1 Norms

Given two vectors x and y of R?, we define the inner product as the sum of the product
of the term components of the two vectors, i.e.

d
(x,y) = xly = ijyj.
j=1
When we compute the inner product of x with itself, we compute the square norm

of x:

Ix]1* = (x,%).

Definition 1.1: Norm

Let E be a R-vectorial space of dimension d, then the application ||| is said to be
a norm if for all yv € F and for all A € R, the following points are verified:

e ||u|| > 0 (positive)
¢ |lu| =0 <= u =0 (definite)
o || Au|| = |A|||lu]| (scalability)

o [[u+v| < |ul|+|v] (triangle inequality)

The norm can be seen as distance between two vectors x,y in the same vectorial
space:

dx,y) = lx =yl

We usually used the following norms:

You can also read to course of Linear Algebra that I have made for the second year Bachelor Students,
which is available on my website.
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The norm Manhattan also known as the Li-norm:

d
Il =D lasl-
j=1

The Euclidean norm also known as the Lo-norm:

e The L ,-norm:

More generally, for all positive integers p, we can define the Lj,-norm:

1/p

d
Iell, = | Dl
j=1

But it is also possible to define more complex norms when we are working we other
objects than vectors.

Exemple 1.1. We will show that the Fuclidean norm is effectively a norm. We have to
check each point of the definition. Let us consider x,y € R? and A € R

e It is obvious that ||x||2 = Z?Zl |z;|? is positive.
e Fach |a:j]2 1 a positive number and a sum of positive number is equal to zero if and

only if all of the numbers are equal to zero = x =10
o We then focus on the scalability property:

d
IAxllz = [ D (Az))?
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Figure 1: Unit ball for the Ly-norm when p =1, p=2 and p = oo

e To prove the last point we will use the Cauchy-Schwartz Inequality which is true for all
norms:

x,y) < x| lyll-

Thus,

2 2 2
1% +yllz = lIxllz +2{x,y) + Iyl

IN

2 2
112 + 2 Il Iy ll2 + llyll2
2
< (Il + llyll2)”-

By taking the square root, which is an increasing function, we get the result.
We can also represent the unit ball associated to the previous defined norms, see

Figure 1. It shows that for all p > 1, the unit-ball is a convex set, which also means that
the underlying application is convex.

Let us now focus on norms on matrices, more specifically, the Frobenius norm.
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Definition 1.2: Frobenius norm on Matrices

Given two matrices X,Y € R™*? the inner product of these two matrices is
defined by :

(X,Y) =Tr (X"Y) ZZX”Y”
i=1 j=1

The inner product of matrix with itself results in the Frobenius norm of this
matrix:

1/2

IX||r =+/Tr(XTX) =

=il gi=ll

1.2 Derivatives

The notion of derivative, or more generally of gradient, is fundamental in optimization.
It is at the heart of gradient descent algorithms but it will also allow us to characterize
convex functions. As we will see, this characterization can be done by studying the first
order derivative or, more simply, by studying the second order derivative.

A few reminders Let us start with a reminder on the derivative of a function.

Definition 1.3: Derivative

Let f: R — R be continuous and zy € R. We say that f is differentiable at zq if
the limit :

Mmf(l‘o +h) — f(x0)
h—0 h

)

exists and is finite.
Furthermore, if f is continuously differentiable at xg, so for h ~ 0 we have:

f(xo + h) = f(wo) + hf'(z0) + &(h),
where ¢(h) is a function that tends to 0 when h tends to 0.

Tee last formula is called a first order approximation of the function f and it can
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be generalized to any other order. this is what we call the Taylor expansion of a function:

Proposition 1.1: Taylor’s Theorem

Let f : R — R be function that is k differentiable, with k& > 1, at a point xq.
Then, there exists a function € : R — R such that:

2 hk

Flzo +h) = f(ao) + b (ao) + (@) s + ..+ [ (o) s +exlh),

here li h) =0.
where lim er(h)

First and second order derivatives of a vectorial function In Machine Learning,
as the reader may have seen in linear models, we the number of parameters we have to
learn is always greater than 1. We are therefore most often led to study linear forms, i.e.
functions which depend on a vector of values and which have real values.

Definition 1.4: First order Derivative

Let f : R* - R be a C° application and x € R%. Then f is differentiable at xq if
it exists J € R¢ such that :

lim [|.f(x) = f(x0) = J f(x0)(x — x0)|

=0 % — ol

=0.

For all 7 the elements of the matrix J are given by :

Jif (xo) = —%g)

X=X(

The gradient gives the possibilty to approximate the function near the point its
gradient is calculated, i.e. in a neighborhood V'(zg) of x¢ . For all x € V(xg) we have:

f(x) = f(x0) + Vf(x0)(x — %0)

It is this approximation that will help to give a first characterization of convex
functions.

Exemple 1.2. Let us consider the application f : R? — R defined by
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f(z,y,2) = 327 + 2z 2973 + 623 + Sxow3 + 971 T3

We want to calculate the Jacobian (or gradient) of this function. To do so, we need
to compute:

of of a4 of
8%1’ 8{172 an (9(173

The Jacobian of f at (x1,x2,x3) is given by :

Jf(x,y,z) = (6:61 + 22913 + 9x3 2rx1x3 + drs 2x129 + 64+ dxo + 9&71)

Exemple 1.3. We consider the log-sum-exp function defined for all x,b € R? by:

d
f(x) = anexp (i + b;)

=1

This function is known to be a good approzimation (and smooth!) of the max
function when =0.

The gradient Vx f(x,b) of this function is given by:

exp(x1 + b1) o exp(z4 + ba)
Vi f(x,b) = (Ej-lzl exp(z; + bj) Doy exp(aj + bj)>

Definition 1.5: Second order Derivative

Let f : R? — R be a real function. Provided that this function is twice diffentiable
at xg, the second order derivative H, (also called the Hessian)of f at x¢ is given
by :

0% f(x)

Hij f(w0) = Vi f(%0) = 2.7 :
1] Ix=xg

where H € R2x4,

This matrix is usefull to prove that a function f is convex or not and also to build
efficient algorithms.
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Exemple 1.4. Let us consider the function f : R?> — R defined by

f(z,y) = 422 + 623 + 3x129 + 2 (cos(z1) + sin(z9))

for which we aim to compute the Hessian matriz.
We first have to calculate the Jacobian this function

of 0 .
Jrx) = (8_£ 8_;;) = (8z1 + 3wy — 2sin(x1) 12z9 + 3z1 + 2cos(z2)) .

The Hessian matriz is then given by:

A |
H L Ox? Ox10z | (8 —2cos(z1) 3
fay) == | 9%f Pf |- 3 12 — 2sin(xg) )

6x28a:1 (9.%‘%

1.3 Convex sets

The notion of convex set is an important element when we want to build optimization
algorithms and guarantee that the successive iterations of this algorithm remain in a
precise set. Moreover, it will also allow us to characterize the convex functions.

Let us start with the definition of a convex set.

Definition 1.6: Convex Set

A set C is said to be convex if, for every (u,v) € C and for all ¢ € [0, 1] we have :

tu+ (1 —t)veC.

In other words, C' is said to be convex if every point on the segment connecting u
and v is in the set.

The figure below provides some examples of convex and non convex sets. The
first and third figures represent non convex sets. Indeed, for the third figure, if we take
two points that are diametrically opposed, the segment between these two points goes
through the center of the ring which does not belong to the set. The second and fourth
figure represent convex sets.
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Exemple 1.5. We list some fundamentals sets that are also convez:

e B={uecR?||ul| <1} is convez.
e Fvery segment in R s convex.
e Every hyperplane {x € R? | alx = b} is convex.

e If C1 and Cs are two convex sets, then the intersection C = C1NCy is also conver.

Let us study the unit ball, we have previously seen that is convez, let us now prove
it for the Lo-norm.

For the first point, consider A € [0,1] and u,v two vectors in the unit ball and let
us set z = Au+ (1 — \)v.

||Z||2 = [[Au+ (1 - >\)V||za

< [[Aully +[[(1 = A)vll,,

< AMuafly + (1 =2 vy

<A+ (1=X),
Hz”z <L
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Proposition 1.2: Convex combination

Let (uj,ug,...,u,,) be a set of m points belonging to a convex set C'. Then for
every positive numbers i, Aa, ..., Ay, such that Y ;0 A\ =1

vV = i)\iui eC.
=1

It means that every convex combination of points belonging in a convex set, be-
longs in the convex set.

Given the definition of a convex set and a set of point x3,...x,,, it is possible to
build a convex set. This new set is called the convex hull ‘H of a set of points

H = {X:Z)\ixi | Z)\Z = 1}.
i=1 i=1

1.4 Convex functions

The study of convex functions is essential in Machine Learning. Indeed, we will see that
most of the problems we will try to solve will involve convex functions. Moreover, it is
through the study of this type of problem that we will be able to provide theoretical
guarantees on the performance of our algorithms.

Fundamental definitions Let us start by the definition of convex function.
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Definition 1.7: Convex functions

et U be an on empty set of a R-vectorial space of dimension d (i.e. U C RY).
A function f : U — R is said to be convex if, for every (u,v) € U and for all
t € [0, 1], we have :

fltut 1 =t)v) <tf(u) + (1 —1)f(v).

Exemple 1.6. The following functions are convex:

e A linear function,
e f:R—=R, flx)=2a2
e f:R—R, f(z)=0.4xexp(x).

A

\/
\/
\/

Proposition 1.3: Convexity and Restriction

A function f : R? — R is convex if and only its restriction to a line is always
convex, i.e. if the function g : R — R defined by ¢(t) = f(x + tv) is convex, for
all x and v such that x + ¢tv belongs to the domain of definition of f (f is concave
if and only if g is concave).

Proof. Tt only requires to write the definition of convex function (& écrire) O

Figure 2 provide an illustration of the definition of convex functions.

The next definition gives the possibility to link the definition of convex function
with convex sets.
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v

Figure 2: Illustration of a convex function with one of its chord. As you may see, the
chords of a convex function are always above the curve

Definition 1.8: Epigraph

Let U be an on empty set of a R-vectorial space of dimension d (i.e. U C R?). Let
function f : U — R, the epigraph of the function f, noted Ey is defined as the set
of points that are above the curve, i.e.

Er ={(x,y) | f(x)y}.

Proposition 1.4: Convexity via Epigraph

Let U be an on empty set of a R-vectorial space of dimension d (i.e. U C R?). A
function f is convex on U if and only if its E is a convex set.

Proof. A ecrire, mais il suffit d’appliquer les définitions et ’équivalence est immédiate.
O

The result of this proposition is illustrated on Figure 3 where the studied function
is a convex one.
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Figure 3: Epigraph of the function = + 2 represented in shaded blue

Definition 1.9: Concave functions

Let U be an on empty set of a R-vectorial space of dimension d (i.e. U C R%).
A function f : U — R is said to be concave if, for every (u,v) € U and for all
t € [0,1], we have:

fltut (1 =t)v) = if(u) + (1 —1)f(v).

With this definition, you directly see that, if f is concave, then —f is convex.
Furthermore, it is also possible to characterize concave function using the the convexity
of the hypograph, i.e. the area under the function curve.

Exemple 1.7. The following functions are concave:

e A linear function ,

e [AR=R, f(z)=z,
e f:R—-R, f(x)=In(x).
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The following proposition provides some properties of convex functions.

Proposition 1.5: Properties Convexity

Let us consider tow convex functions f and g defined on an open subset spaceU
of R%:

e any convex combination of f and g remains convex

e if f is furthermore an increasing function, then (f o g)(x) is convex

e the function h defined by h(x) = max (f(x), g(x)) is convex

Proof. The proof of this proposition calls for the definition of convexity, it is left to the
reader as an exercise O

Characterization of convexity using derivatives In the following, we will study
how can characterize the convexity of a function f using the first and second order deriva-
tive of the function.
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Figure 4: Illustration of a convex function with one of its chord. As you may see, the
chords of a convex function are always above the curve

Proposition 1.6: First order derivative and convexity

Let f be a continuously differentiable function on &/ € R%. Then f is convex if
and only if, for all (u,v) € U, we have :

fv) = f(u) + V() (v —u).
Equivalently if and only if, for all (u,v) € U, we have :

(Vf(v) =Vf()(v-u)=0

Proof. Write the proof O

An illustration of Proposition 1.6 is given in Figure 4 where the tangents of a con-
vex function are always below the curve. Note that for concave function, the tangents
will be over the curve.
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Proposition 1.7: Second order derivative and convexity

Let f be an application twice continuously differentiable on a open subset U/ of
R?. Let H be the matrix of the application V2f (i.e. the Hessian of f). Then f
is said to convex if one of the equivalent propositions holds:

e V2f(u) >0 for all u € Y.

e H is a positive semi definite, i.e, Yu € U

u'Hu > 0.

Remember that a matrix H is said to be PSD if all of it’s eigenvalues are positive.
It sometime easier to check this point rather than applying the definition of convexity to
a complex function.

Having positive eigenvalues means that the gradient is an increasing function along
each directions of the space. Furthermore, a function is convex if and only if its gradient
is an increasing function along each direction.

Exemple 1.8. The following matriz H defined by:

A0 ... 0
0 A ... O
M=| . , s
0 0 ... Mg
where A1, ..., g are positive. This kind of matrices can be met when the variables

are “independant”, for instance for a function f of the form:

d s
f(x) = Z?]ZL?
j=1
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2 Unconstrained and Smooth Convex Optimization

This section is dedicated to the global presentation of convex optimization, it will then
focuses on unconstrained convex optimization and presents some fundamental algorithms.

2.1 Motivation

Given a convex function f : R* — R we would solve the problem :
x* =arg min  f(x).
xeRd4

The aim of the course is to introduce some algorithms to build a sequence (x;,)
which converges to x*, the value of x for which f reaches its minimum.

neN

We will see how we can build such a sequence, but before doing this, we will see
how we can characterize the optimum of a function f, in our case the minimum, i.e.
what are the conditions of optimality.

2.2 Optimality Condition

Let us first define the minimum of a function f.
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v

X1 X2

Figure 5: Ilustration of local and global minimum of a function. The point x; is the
global minimum of the function while x5 is just a local minimum.

Definition 2.1: Minimum

Let f: RY — R be a continuous function. We say that u € R? is a local minimum
of f if there exists a neighborhood V' C R? of u such that :

fu) < f(v), vveV.

u is a global minimum of the function f if and only if :

f(u) < f(v), VveR%L

In other words, a minimum of the function f is just the value of x where the func-
tion f reaches its lowest value (locally or globally), as illustrated in Figure 5.

If it as graphically, on a one dimensional graph easy to find such minima, we need
to find other criteria to detect them.

The following proposition gives a first characterization of relative (or local) mini-
mum:
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Proposition 2.1: Euler’s Inequation

Let f : RY = R be a continuous function and &/ a non empty and convex set.
Furthermore, let u € U be a relative minimum of f. If f is differentiable at u we
have:

Viuw)(v—u) >0, Vvel

However, this first result is rarely used in practice. If we go back to Figure 5, we
see that the minima (or maxima) are located on the space where the derivative of the
function is equal to 0. This condition of optimality is know under Euler’s equation.

Proposition 2.2: Euler’s Equation

Let f : R — R be a continuous function and differentiable at u € R%. If u is a
local minimum then we have:

Vf(u) =0.

Proof. In fact, using the definition of a minimum in a neighborhood: Vv € R% 3t > 0
such that u +tv € V' a neighborhood of u, we have:

fu) < flut+tv)=f(u)+Vfi)(tv) +tve(tv), t<1
= 0 < Vf(u)(tv)+tve(tv)

Dividing by ¢t > 0 and taking the limit £ — 0 we have:

0<Vf(u)v

Same thing by replacing v — —v we have:

0 < —=Vf(a)v.

So for all v € R? we have Vf(u)v = 0 thus V f(u) = 0. O
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If this proof has been made using the definition of a (local or global) minimum, we
can derive the same result for the maximum. The solutions of Euler’s Equation are also
called critical values or critical points.

Note that this proposition only provides a necessary condition for a point to be
a local optimal, but that this condition is by no means sufficient as the example below
shows.

1
Exemple 2.1. Let us consider the functions f and g respectively defined by 5(1‘—2)2 -2

1
and 53:3 — 1 and represented below.

A

\
\

7

The represented points x on both graphs are solutions of Euler’s Equation V f(x) =
0 and Vg(x) = 0 respectively. However, if it represents a minimum for the function f,
this is mo more the case for the function g where the solution x is neither a minimum
nor a Marimum.

This example shows that is important to characterize the different solutions of Eu-
ler’s Equation, i.e. when do they correspond to optima and what kind of optimum is it?

The solution of Fuler’s FEquation gives us the points where the function f reaches
a local extremum (a minimum or maximum (local or global)).

Given a solution u of V f(u) = 0, we can say that :

e u is a local minimum if V?f(u) = Hy(u) > 0, i.e. the Hessian matrix evaluated
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at the point u is PSD. This point is a global minimum if the function is convex
everywhere or if for all v # u we have f(u) < f(v).

e u is a local maximum if V2f(u) = Hy(u) <0, i.e. the Hessian matrix evaluated
at the point u is NSD (Negative Semi Definite). This point is a global maximum
if the function is concave everywhere or if for all v # u we have f(u) > f(v).

e in other cases, it is neither a maximum nor a minimum.

Exemple 2.2. Let us consider the function f : R? — R defined by:

f(x) = 22 + 42% — 22129,

We aim to find the extrema of this function.

We will first compute the gradient V f of this function and find for which value of
X this gradient is equal to 0. The gradient is given by:

Vf(x)= (2331 —2x9 8r9 — 23:1)
Setting this gradient equal to 0 leads to x1 = x9 using the first component and

x1 = x9 = 0 using the second one. So the point x* = (0,0) is the only solution of Euler’s
Fquation.

We can now compute the Hessian matriz to study what kind of extremum it is. The

V2f(x) = (_22 _82> .

Looking at this matrices, we can see the two eigenvalues are strictly positives, it
means the function f is convexr so the point x* is the global minimum.

hessian is given by:

Exemple 2.3. Let us study the function f : [~2,2]> — R defined by

f(x) =4+ (27 — 2cos(2mz1)) + (23 — 2 cos(2mm2)) .

This function is particularly interesting to study because it admits several local ex-
trema but also a global minimum as it be seen below It is therefore very interesting for
most optimization algorithms, especially to test their efficiency.
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We can see that this function is neither convex nor concave, which could be verified
by studying the hessian. We can easily compute the gradient of this function:

Vf(x) = (2x1 + 4w sin(2ma1) 2wy + 47sin(27way)) .

The solutions of Euler’s Equation are given solving the following system:

x1 = —2mwsin(27xy),

x9g = —2mwsin(2mxy).

The two equations are independant but remain hard to solve, but an obvious solution
is given by the point x* = (0,0). We can also verify that this point is the global minimum
of our function.

2.3 Minimization Problems

Given a vectorial space E of dimension d and a function f : E — R, an optimization
problem consists of solving the following problem :

min f(/v).
The function f is sometimes called the cost function. it can represent the cost for
a company to store a series of products (represented by the parameter x) or the risk that
is taken by making decisions.
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Most of times, we want to minimize this function f under some constraints, but
we will study this in Section 3.

Let us first have a look at some basics optimization problems.

Linear Regression Given a vector response y € R and feature vectors X = (x1,...,X;m),x; €
R?* where d < m. We would like to find a vector @ € R? that explain the value of y using
X with the following model:

y=XpB+e, where &~ N(0,0°T),

where € represents the errors due to the model.

To find the best vector 8 we have to minimize this error, i.e. to solve:
m
min e; = min ||y — X8|3.
OcRd =1 OcRd

We easily check that is problem is convex. Indeed, the gradient of the function to
optimize is:

Voe=—2XT(Y - X0),
and the solution of Euler’s Equation is given by:
and the second order derivative is given by 8 = (XTX)"1XTy.
Vi =2X"X,

Which is a symmetric positive semi definite matrix of size d. Let us show it rapidly
and consider that \ is an eigenvalue of X7 X and u, the associated eigenvector. Using
the definition of eigenvalue and eigenvector, we have:

XTXu, = Auy,
uj X Xu,y = Auluy,
(Xuy)” Xu, = Muall3
2 2
[Xuallz = Allaallz -
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As an eigenvector is necessarily non-zero, we have:

2
_ 7HXUA!2 > 0.
[uallz

An analytical solution exists to solve this minimization problem. Unfortunately
this is not always the case.

Logistic Regression Let us consider now the logistic regression problem which is quite
similar as the previous one.

We want to find a model that predict the class of our data (see Section 7.4 for further
details).

To predict the class of the individual we use a model of the form:

P(oz|y=1)
1-P(x|y=1)

9(x,0) = log< ) =60+ 011+ ... + 60424

The parameters of the model are estimated by minimizing the negative log-likelihood
of our data.

1
1+ exp(— Z?:l GdXij) ‘

((X,0) = =Y yilog(pi) + (1 — ;) log(1 — p;), where p; =
i=1

Unfortunately, there is no analytical solution to this problem. We need a way to
approximate it step by step. This is the purpose of gradient descent algorithm.

2.4 Gradient Descent Algorithms

Given a function f and a non empty set spaceU and knowing there is a solution to the
problem:

u”* = arg min f(v).
veu

The idea is to build a sequence (ug)ren which converges towards u* using the
following scheme:

e Take an initial value ug: where we start our optimization procedure
e u; — ugy: choose a direction dy and minimize the function f along this direction

e Solve arg min f(ux — pdy) = p: how far shall we go in the selected direction?
p>0

27 - Statistical Supervised Machine Learning



Figure 6: Illustration of different ways to reach the optimal solution u* of the function
f we aim to minimize. The different ellipses represent the level set of the function f.

e Uy, = u; — prpdy: update the value of the current position

This process is repeated until we reach the optimal solution u*.

Several questions then arise (i) how to choose the direction of descent and (ii) at
what point should we advance in the chosen direction?

Indeed, as shown in Figure 6 several paths seem to lead to the desired solution,
but is there one that will be preferable to the other? How can we use our knowledge of
the function to be optimized to build such a path rather than being guided by chance?

To answer the first question, we will focus on the following quantity at a given
iteration k.

f(ag — pdg).

More precisely, we will focus on the first order approximation of this quantity.
Remember that we have the following approximation when p is closed to 0:
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f(ug = pdi) = f(ur) — p(Vf(ur), di) + pe(p),

where ¢ is a function that tends to 0 when p tends to 0. To minimize f(u; — pdg)
we have to choose the direction dj, that maximize the inner product (V f(uy),dy). Due
to Cauchy-Scwhartz Inequality we have to choose dp = V f(ug).
So the previous algorithm become :

e Choose ug to initialize the algorithm,

e set up1 = ug — ppVf(ug) for pp >0
However, we also need to find a stopping criterion. To find it, keep in mind that
the critical values u* verify V f(u*) = 0. Thus, when the norm of a gradient of f is close

to 0 we can suppose to we have rich an (or the) optimal solution. In practice, we choose
a enough constant 1 and apply the previous algorithm until

IVf ()l <.

The remaining is how to choose the value p; at each step of the gradient descent
algorithm. The easiest choice is to choose a constant one, i.e. for all k, set pp, = p > 0.

It gives our first descent algorithm.

Definition 2.2: Gradient Descent with Constant Step

Let f be a function from a vectorial space E of dimension d and p,n strictly
positives values. Then the Gradient Descent with Constant Step is defined by

e choose ug to initialize the algorithm, k£ =0
e while |V f(ug)| > n

1. compute V f(ug)
2. set up41 = ux — pVf(uyg)
3. k=k+1

e return ug

However, the a constant step is not the best choice to make in practice. Indeed, a
bad choice of this constant can lead to a very slow convergence of our algorithm or even
to its divergence as illustrated on Figure 7.
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Figure 7: Importance of the choice of the learning rate p. A small value implies a lower
speed of convergence of the algorithm (left). A too high value implies a divergence of the
algorithm (right).

1
The most interesting one is to choose the value pi which minimizes the function along
the given direction.

We rather choose p; non constant but decreasing with the value of k, e.g. pp =

It leads to another gradient descent algorithm with a so called optimal step.

Definition 2.3: Gradient Descent with Optimal Step

Let f be a function from a vectorial space E of dimension d and 7 strictly positive
value. Then the Gradient Descent with Optimal Step is defined by

e choose ug to initialize the algorithm, k = 0
e while |V f(ug)| > n

1. compute V f(uy)
2. solve arg min f(ux — pV f(uy))

p>0
3. set ugr1 = ug — pVf(ug)
4. k = k+1

e return ug

We can show that, for strongly convex functions, this algorithm converges. We
have already talk about convexity but not strong convexity, let us define it.
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Definition 2.4: Strong Convexity

Let f be a convex and continuously differentiable function on R™d. We say that
f is strongly convex or a-elliptical if it exists a > 0 such that

(Vf(v) = Vf(u),v—u) > alv-ul? Vu,veR?

Saying differently, and using the second order derivative, a function h is said to be
a-strongly conver if we have:

V3 f = al,

i.e. for allu € R, ul'V2fu > o|ul’.

Proposition 2.3: Optimal Step: Convergence

f f is an a-strongly convex function with respect, the Gradient Descent with
optimal step converges.

Let us now have a look at the gradient at each step. What can we say about
(Vf(up41), Vf(uy)) using pj, = arg Iélin f(ua — pdg) ?
p>

If pr, minimize f(ug — prdx) we have :

55 T = V), =0
— <Vf(uk - kaf(uk)’ Vf(uk)> = 07
> (Vf(up41), Vf(ug)) = 0.

We can see that the two successive directions of descent are orthogonal. This in-
teresting observation is of great interest to determine the optimal step for some problems
in Machine Learning, the quadratic problems as illustrated in the following example.

Exemple 2.4. Let A be a symmetric, positive and semi definite matriz and b € R, Let
us consider the quadratic form f for all u € R? by:

flu) = %(Au,u) (b,
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We aim to determine the optimal step, at each iteration, of gradient descent pro-
cedure applied to this function. We first compute the gradient. For all k € N we have
Vf(ug) = Aug — b. Furthermore,

Vf(ug41) = Augg — Db,
= A(uk — pk(Auk — b) — b,
= Auk —b— pkA(Auk — b)

Now, we use the fact that for such an algorithm we have (V f(ugs1),Vf(ug)) =0

- <A11k — b, Auk —b-— pkA(Auk — b)> = O,

—> (Au; —b,Au; —b) = (Au; — b, pyA(Au; — b)),
(Aug — b, Au; — b)

(Aug — b, A(Au, — b))

Finally, for quadratic problems of the previous form, the optimal learning rate at
each step k is equal to

o law b
o lAw bl
where |Jul|} = u” Au.

Other algorithms or way to choose the learning rate at each step can be studied
as:

e Line search: Armijo’s criterion, Wolfe criterion

e Algorithms: Conjugate Gradient Descent

We will finish this part with a last algorithm called the Newton’s Method.

The Newton’s Method is also an algorithm of gradient descent. It uses the second
derivative to refine the direction of the descent as follow:

Ugyq < U — (V2f(uk))_1 . Vf(uk)

o It requires less iteration to converge to the solution compared to the other gradient
descent methods.
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e Harder to implement, requires the inverse of the Hessian of the function we want
to optimize (O(n?)).

e The Hessian is not always invertible at a given point.

The main drawback of the Newton’s Method is to compute the inverse of the
Hessian matrix H,;l. To avoid it, an other process is proposed as follow

w1 = up— MpVf(uy),
Mk+1 - Mk + Ck.

The idea is to approximate the H,;l by matrix M, at which, we add a matrix of
correction Cj, at each step.

Remember that :

Vi) = V(s + (W — 1) ~ V() + V2 (W) (W — wppn),

we then have the following approximation:

(VQf(ukH))_l (Vf(urs1) = VI(ug)) ~ ugy1 — ug.

-1
If we set : Mgy = (V2f(uk+1)) , Ve = Vf(ugr1)—Vf(ug) and 0 = ugy1 —uy,
we get the Quasi Newton’s Condition :

It remains to see how we can define such a correction matrix C. We present two
solutions that are based on the use of rank 1 and rank 2 matrices and their respective
algorithm.

Note that, in practice, we use the rank 2 corrections matrix in the optimization algorithm,
known as BFGS.

Rank 1 Correction
The matrix of correction Cy is supposed to be of rank 1. So we can rewrite Cy, as
vkvg where v, € R?.

The update rule of the matrix My can be written as

T
Mjy1 = My, + vpvy,
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and the Quasi Newton’s Condition gives us:

(Mg, +vivi)ve = 6,

My + Vivive = O,
ViVEYe = Ok — My,
v, = O — Mk’)’k‘
V;;F’Yk

And the second line gives us : Vf’yk = (Y0k — ’ykMk'ylg)l/ 2

This first rank correction leads us to the Broyden Algorithm.

Definition 2.5: Broyden Algorithm

Let f be a function from a vectorial space E of dimension d and 7 strictly positive
value. Then the Broyden Algorithm is defined by:

e choose ug to initialize the algorithm, My =1 and £ =0
e while [V f(ug)[| =7
L. set py = arg min f(uy — pMyV f(uy)),
pER

2. set upy1 = up — pp MV f(uy),

(6% — Myve) (61 — Myyie)©
(0 — Mgvi) T ve

3. set Mgy = My +
4. k = k+1

e return ug

Rank 2 Correction The idea is quite similar, but instead writing the correction matrix
C; as a rank one matrix, we write as the sum of two rank one matrices, which leads to
rank 2 correction, i.e.

Cy = avkvf + ﬁwkw,{.

Thus,

Mjy1 =My + C, = My + Ozvkvf + Bwkwg
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In order to determine good values of a and § we use the Quasi Newton’s Condition
and set vy = v, and w, = M;4.

It leads to:

and the update rule becomes:

T TagT
YeY M;.6,.6; M
Myy1 = My + — b — Uk k
Yi 0 6k M, 6y

The use of this update rule is known as the Broyden—Fletcher—Goldfarb—Shanno
(BFGS) Algorithm.

Definition 2.6: BFGS Algorithm

Let f be a function from a vectorial space E of dimension d and 7 strictly positive
value. Then the BFGS Algorithm is defined by:

e choose ug to initialize the algorithm, My =1 and k£ =0
e while ||V f(ug)|| >n
1. set p = arg min f(ux — pMyV f(uy)),
peER
2. set Upq1 = u — pp MV f(uy),
VY | Mpdpdp MY
YL Ok I M;6),

3. set Mgy = My +
4. k = k+1

e return ug
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3 Constrained and Smooth Convex Optimization

Write this part later, maybe next year.
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Part II

Supervised Machine Learning

blabla
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4 Introduction

In this first part, we present some generalities on what machine learning is as well as the
importance of data and the various problems related to the good representation of the
latter.

4.1 Generalities

Machine Learning is a subfield of Artificial Intelligence at the frontier of computer science
and Applied Mathematics (statistics and as optimization). This discipline also partially
overlaps Data Science as it is based on collecting data which are analyzed and studied
in order to extract the substantial information that can be used for application at hand.

The main question we want to provide an answer is:

Can the machines think?

In other words, are the machines able to do some tasks that are usually done by
humans (A. Turing), such as:
e driving a care,
e create a masterpiece,
e recognize people,
e detect anomalies in medical images,

e ctc.

Tom Mitchell [Mitchell, 1997] has provided a more formal definition of Machine
Learning®

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience F.

The experience F can be thought as a collection of data but also the training
process that is used to train your Algorithm. The more data and the more you train
your model, the better the results will be. However, everything depends on the used
performance measure P, but we will talk about it later. The task T can refer to a

2The book is available here: https://www.cs.cmu.edu/ tom/mlbook.html. The first chapters might
be interesting for the readers.
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Figure 8: An example of data that can be used for classification tasks. These two images
are extracted from the Dogs vs Cats dataset, available on Kaggle

classification or a regression task as it has been studied before in the linear regression
course.

To sum up, to solve a given task and to help our machine to think or to solve a
problem we need a collection of observations, i.e. a collection of data.

4.2 Data and Machine Learning problems

An other definition of Machine Learning can be stated as follows

Machine Learning is a field of Computer Science, subfield of Artificial Intel-
ligence, which aims to explore the way to elaborate and study able to learn
and to make predictions using data.

Depending on the application, the nature of the data can be multiple: it can con-
sists of images, videos, raw data, categorical data, trees, graphs, times series, etc.

A concrete example is illustrated on Figure 9 with these two images. The aim of
the algorithm is to be able to distinguish the dog from the cat in a collection of images.
In this case, the algorithm is trained to solve a classification problem where the algorithm
output can take two values: dog or cat.

We also often deals with data that can be represented in a table. It is the case
of a regression task where we aim to predict the score obtained at a language test (y)
according to the scores obtained to four other tests x1,x2,z3 and x4 (see Table 1).
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Y T1 | T2 | T3 | T4
125 | 13 | 18 | 25 | 11
158 | 39 | 18 | 59 | 30
207 | 52 | 50 | 62 | 53
182 129 | 43 | 50 | 29
196 | 50 | 37 | 65 | 56

Table 1: Data describing the score obtained at a language test according to the score
obtained to four other tests.

Although the data, by their standard representation may look very different, they
are necessarily seen in the same form for a machine. This form is most often the one
represented in the second example, i.e. in the form of an array of values, i.e. in the form
of a matrix.

This data representation is one of the important pillars for machine learning. Al-
though it may seem simple at first, having a good representation of the data is far from
being trivial. This last point is even an important axis in research which is very often
guided by the problem we are trying to solve. The representation learning aspect is
particularly important in Natural Language Processing (NLP) where it is necessary to
learn a good representation of words or sentences in the form of vectors.

Lets us go back with our images to see how we can see more precisely. Remember
that images can be seen as a collection of pizels (or vozels if you working in a three
dimensional space) to which a figure is associated. Generally on a black and white
image, the pixel value is between 0 and 255 (or 0 and 1 if the data are scaled). On
color images, as the one presented in Figure 9, an image is represented by three different
matrices®, where each entry represent the pixel intensity associated to a color channel
(R: red, G: green and B: blue)

0.1 1 023 034 1 019 0.56 83 0.23
R=1012 023 095, G=1067 053 095], B=|(074 081 0.34
0 045 0.22 1 095 0.23 0.45 0.45 0.29

However, all these features have some flaws:

e the intensity of the pixels will depend on the luminosity but also on the conditions
of capture of the image

3In reality, the images are not left in matrix form, we use models, such as convolutional neural
networks to learn a vector representation of these images, these vectors will then be easier to manipulate
for future algorithms.
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e the shape of the object on the image will depend on the angle of view and the
distinction of the object can also be more complex

e finally, the size of the object will also take into account the distance at which it is
located

For all these reasons, it is important to define/find descriptors that are independent
of environmental factors, this will be the objective of a Representation Learning course.
These methods are generally based on neural networks algorithm. We will present them
later in this document.

As we can see, data is the core of Machine Learning algorithms (which could still
be compared to the £ experiment mentioned by Tom Mitchell). We have also seen that it
can take different forms, it can be raw or transformed to make it usable by an algorithm
(translation of a text or word in the form of a vector of numbers). Finally, the descriptors
of these data can also be learned in order to obtain a representation of the data adequate
to the studied task.

A question one might then ask when observing a series of numbers is:

Do the observed values of the different descriptors follow a well known distribution?

Obviously, it is true the different values follows a given distribution. However, and
it is the main problem we have to deal with in Machine Learning,this distribution is
always unknown. We will see that this fact has consequences on the learning process
of an algorithm and on its performance.

Let us first focus on the use of the data and let us go back on the image classification
task with Cats and Dogs. Suppose that we have a collection of such images as illustrated
on Figure 9 (keep in mind that each image is actually a point in d-dimensional space,
where d is the length of the vector, i.e. the number of descriptors of the image.) and you
want to classify this image, i.e. learn an algorithm, so a model, which is able to predict
the class of the image, i.e. to separate the two types of images.

To build such an algorithm, you thus need to define three things:

e Input: the data that will be used for the task, e.g. our images of cats and dogs
(in a vectorial form)

e Output: the answer of the studied task, e.g. the label of the image.

e Model: a collection of several object that are used to solve the problem (objective
function, type of hypothesis and optimization process).

In this case we could learn several types of separators or classifiers for the images,
such as straight lines or more complex curves in the studied space.
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Figure 9: An example of data that can be used for classification tasks. These images are
extracted from the Dogs vs Cats dataset, available on Kaggle.

The classifier that we will learn will try to minimize the error in classification on the
observed data, i.e. we will try to minimize the number of images of dogs that we will
classify as cats and vice versa. This will be done based on the descriptors of the images
as well as on the label of these images. Via a learning process that we will detail later,
an algorithm will then learn iteratively from these errors in order to improve and reach
an optimal solution.

Once this model is learned, it will then be submitted to new data (e.g. new images) that
it will have to classify without knowing the labels of these data.

As we have seen, once the data are collected, and often completed and cleaned,
they can be used for several machine learning tasks such as regression when it comes,
e.g. to predict the price of a share or the price of a house according to its characteristics.
They can also be exploited for classification tasks when, e.g. one aims to discriminate
a spam from a ham when receiving an email, identify if a transaction is fraudulent or
genuine, detect anomalies in a medical examination such as a blood test. In both cases,
the data are labeled using a variable y. When we have a genuine transaction or a ham
email, the example is usually labeled —1 (also called negative example) while it is la-
beled 1 (positive example) when it is an object of interest like a spam or a fraudulent
transaction. When such a labeled information is used in a Machine Learning algorithm,
we talk about Supervised Learning, and Unsupervised Learning® otherwise. It also exists

4This branch will be studied in a dedicated course
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Figure 10: Descriptive diagrams of the different branches in Machine Learning as well as
the different research axes in these different components. This image can be found here
here.

an other branch in Machine Learning which is called Reinforcement Learning®. However,
for the sake of completeness, we will give a brief description of each branch and more
information can be found on Figure 10.

Supervised Learning This includes all classification and regression tasks. It includes
applications such as fraud detection, recommendation systems, time series analysis, study
of medical images, EEG, ECG, prediction of the number of infected people for a given
disease/virus, the stock market value of a given company, etc. The important point here
is the access to labeled data.

We can also classify some research fields as transfer learning (how to exploit the knowledge
learned in one field in order to apply it to a related field).

There are many algorithms that belong to this field. Readers who have taken a course on
linear models will surely remember the Gaussian linear model (regression) or the logistic
linear regression (classification). Other models are of course commonly used and we will
present them in the next section.

Unsupervised Learning Unlike supervised learning, here the data used do not have
a label. The classification is then done according to the distribution of the data. We find

5We do not study Renforcement Learning here
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applications such as anomaly detection, clustering for population segmentation for mar-
keting strategy, recommendation systems based on customer typology. Another aspect is
dimension reduction via statistical methods such as Principal Component Analysis and
feature construction.

We can also include approaches such as unsupervised domain adaptation which is a
subcategory of transfer learning but in its unsupervised version.

Reinforcement Learning This last category differs from the first two in that there
is no real data per se. Here the system evolves in an environment and must be able to
undertake the right actions according to this environment and the state in which it is via
a reward /punishment system.

The simplest example is the automatic piloting of a drone whose goal is to avoid obstacles
in order to reach its destination point. The environment can then be considered as the
set of objects that are close to the drone. The state of the drone can be its structural
state as well as its position relative to the elements around it and the actions correspond
to the movement of the drone (left, right, up, down). In the case where the system hits
or approaches an obstacle, we decrease the value of a quantity that reflects the reward
obtained by the system.

In this course, we will focus on the former branch, i.e. on Supervised Learning.
Our objective will be to learn a classifier h, also called an hypothesis, using a collection
of labeled data {x;,y;}", to classify new instances, where x; is a set of descriptors. The
next section will focus on the theoretical aspect of Supervised Learning.

Requirements In order to understand the different notion presented in this document,
but also in Machine Learning in general, the reader is invited to review the fundamental
concepts in Probability/Statistics - Linear Models - Linear Algebra: operations on ma-
trices (determinant, transpose, multiplications, eigenvalues, eigenvectors) and finally in
Analysis: derivation, integration, study of vector functions with real or vector values -
sequences of functions and real vector sequences.
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5 Statistical Learning Theory

First, we introduce the definition of Risk, the quantity we aim to minimize in most
of the optimization problems when it comes We will see that it is possible to provide
theoretical guarantees on the performance of the learned model using statistical tools
such as concentration inequalities.

Let us consider X the input space of our data, also called the feature space and Y
the output space®. The input space, i.e. the features used to describe the data can be
of different types: it can consist of continuous or discrete descriptors. In this document,
we will focus on continuous features, i.e. X C R%

The output space can also vary from a task to another. It can be discrete, real,
or even a structured data. The nature of the output gives important information on the
nature of the problem and leads the user to choose the appropriate tools.

e When Y C Ror Y = [0,1], i.e. when the output is a real value, the aim is to
learn either a score, a probability or to estimate a quantity as it is usually done in
regression tasks.

e When Y = {—1,+1} or {0,1} , i.e. the output is binary, we aim to classify the
data in two categories, also called classes. This type of tasks is called binary
classification. Note that the output can take more than two values, ie. Y =
{1,...,q} where ¢ is the number of classes. In this case, we talk about multi-class
classification.

To solve these different tasks, we use an algorithm A which aims at learning a func-
tion h : X — Y called hypothesis. From a practical point of view, the joint distribution
of the data D = X x ) is unknown and we only have access to a collection of sample
points, i.e. a set of observations S = {(x;,y;)}/~,, drawn i.i.d. from D. The goal is then
to learn a function h using the sample S which is “good enough” on the given training
sample but which is also able to perform well on a new sample (x,y).

The set of observed data is usually represented in a matrix X € R™*? as follows:

Vi Vi Vp
X1 (%11 - L1k - Tid

X = x| Tin Tik Tid |,
Xn \Tnl " Tnk °°° Tnd

SNote that there may be no output space, i.e. Y = ) as in unsupervised learning.
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where a raw represents an observation (m observations) and a a variable or de-
scriptor is represented in column (d columns).

In the next section, we explain how the function h is learned and the meaning of
performance of an algorithm.

5.1 Empirical Risk Minimization

In order to solve a given task, the algorithm 4 needs a criterion to optimize, also called
a loss function usually denoted by ¢(h(-),-) : X x Y — Ry. In a regression task, it
can be based on the difference between the estimated value, h(x), and the true value
y, for example £(h(x),y) = |h(x) — y| or (h(x) — y)?. In a classification task, the most
natural way is to consider the number of errors made by the classifier h. The considered
loss function is then defined by £(h(x),y) = Lipx),y and is called 0-1 loss. However,
because of its non convexity and non differentiability, minimizing this loss is known to
be NP-hard. That is why, we usually change the 0-1 loss by a surrogate function.

Whatever h, we need to minimize its expected value over the distribution D, lead-
ing to the True Risk.

Definition 5.1: True Risk

Let /: X x Y — R a loss function and D the distribution of the data. The True
Risk R of an hypothesis A is defined by:

¢ = X 0
RK) = E_[h(x).y)

However, we can not compute this quantity in practice because the joint distribu-
tion D of the data is unknown. We rather minimize the Empirical Risk, the average error
over the sample S.
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Figure 11: Illustration of the over-fitting phenomenon on a regression task. On the left,
the learned hypothesis h; do not learn exactly the data and is able to generalize better
than the hypothesis ho on the right which perfectly fits the data.

Definition 5.2: Empirical Risk

Let S = {(x;,y)}"; a collection of m examples drawn i.i.d. from D and ¢ :
X x Y :— Ry a loss function. The Empirical Risk risk of an hypothesis h is
defined by:

1 m
R(h) = p— > L(h(xi), yi)-
i=1
In other words, the empirical risk is the mean value of the loss over all the observed
data.

We aim to minimize the empirical risk with the hope that the sample S is rep-
resentative of the unknown distribution. At the first glance, minimizing the empirical
risk might be then equivalent to minimizing the true/generalization risk. But this is not
sufficient in general, and the risk is to tend to an over-fitting phenomenon, it is illustrated
on Figure 11.

In this same figure we can see that the model learned on the right seems more com-
plex (it is curve) than the one on the right which is straight line. This remark shows that
it is important to fix some constraints on the hypothesis we can learn to avoid such a situ-
ation. We present below a non exhaustive list of ways to constrain the learned hypothesis.

Empirical risk minimization. The most straightforward solution is to fix in advance
the hypothesis space H, called a Set of Hypotheses or Class Function. Then, given this
set of hypotheses H, a sample S and a loss function ¢, we are looking for the hypothesis
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S as the solution of:

hy = argmin R (h).
heH
If the size of H is small enough, we can avoid the situation previously described.
However, without any side information on the data, it is hard to choose the appropriate
set of hypotheses for the task at hand.

Structural risk minimization. [See Section 4.1 of [Vapnik, 1995]] The idea here is
to choose a growing sequence of sets of hypotheses {Hy, }nen, i.e. the complexity or the
number of hypotheses is growing with n, and to choose the hypothesis h* solution of the
following minimization problem:

hy = argmin R%(h) + pen(n,d).
heHn, neN

Compared to the previous formulation, a penalty term is added to the empirical risk.
This term measures the complexity/size of the set of hypotheses H,, and is a growing
function of n (note that it also depends on the dimension of the data). The aim is then
to learn the best hypothesis in the smallest set H,,. With such a formulation, we are able
to find a good trade-off between the empirical risk minimization and the complexity of

the learned model, i.e. find a hypothesis that is able to generalize well. But choosing a
sequence of sets of hypotheses remains hard in practice.

Regularized risk minimization. The preferred solution in practice, because easier
to implement, is to choose a set of hypotheses H sufficiently large enough and to add
a constraint on the parameters 6 of the learned model. The added constraint, A [|@]], is
called a regularization term and is associated to a regularization constant \.

h% = argmin R5(h) + A ||6]| .
heH

With the parameter )\, we are able to indirectly control the size or complexity of the

set of hypotheses by constraining the norm of the parameters of the model for instance’.

Exemple 5.1. Such a formulation has been met in the Linear Model course when the
lasso regression was presented. In this problem, we aim to find the best linear model,
described by a vector 0, which fits a set of data (y,X). We also ask that the chosen
model to be as sparse as possible, i.e. based on the minimum number of features. To do
so we solve the following minimization problem:

"In the rest of the document, such a regularization constant will be called hyper-parameter instead
of parameter to distinguish them from the parameters of the learned hypothesis h.
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Figure 12: Evolution of the Empirical and True Risks according to the complexity of the
set of hypotheses.

. _ 2
Jin [y — X613 + |6

where the use of ||-||1 is the lasso regularization term which induces a sparse solution
for a sufficiently large X.

In this last expression (as in the previous example), the smaller the value of A is,
the more importance we give on fitting well the data. In the same way, the greater A,
the more importance we give on the complexity of the learned model. The errors made
by the algorithm become insignificant compared to the control of the magnitude of the
parameters 6. The risk is that, when A — oo we lead to an under-fitting phenomenon
without a good generalization capacity.

The aim is to learn a model with the appropriate value of A, i.e. to find a good trade-
off between the minimization of the empirical risk and the complexity of the hypothesis
as depicted in Figure 12. To tune the value of \, we typically use a k-fold cross-validation
on the training set: we separate the dataset into k—folds of regular size. This process will
be described later, but to present it rapidly, it consists in learning a hypothesis/model
using k — 1 folds of the training data and test its performance on the remaining one. The
process is repeated k—times and we keep the hypothesis/model, so the value of A, with
which achieves the lowest empirical risk in average.

Even if we can empirically assess the performance of a model on a test set, it is
also important to provide generalization guarantees in order to bound the performance
of the learned algorithm regarding its behavior at training time.
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The next section is dedicated to this point and presents generalization bounds based
on the complexity of the set of hypotheses or on some properties on the loss function.

5.2 Generalization Bounds

A generalization bound has the following general form and is often referred to a Probably
Approximately Correct (PAC) bound [Valiant, 1984]:

Pr(R(-) =Rs()| = ) <9, (1)

where e > 0 and ¢ € [0, 1]. § is an upper bound on the probability that the true risk
deviates from at least ¢ from its empirical value. Looking at this bound, an immediate
consequence is that the lower the value of ¢, the greater (i.e. the closer to 1) the value
of 4. Furthermore, the closer from 0 both § and ¢ are, the more reliable our estimation
is. Such a bound is usually derived using concentration inequalities such as Hoeffd-
ing [Hoeffding, 1963| or McDiarmid [McDiarmid, 1989] inequalities. The bound (1) can
be rewritten as a probabilistic bound of convergence from the empirical estimate to its
mean [Vapnik and Chervonenkis, 1982, Valiant, 1984]

RY(:) = R§()| < e(8,m),

where § is the rate of confidence on the given bound and ¢ is a function of the
rate of confidence and a decreasing function on the number of training examples. Such
a bound holds with probability at least 1 —§ and the aim is to build a function e(-) with
a high rate of convergence.

In the following, we will see how we can build such generalization bounds and that
their convergence rate is often ~ O(In(m)//m) or even O(1/y/m).

For a complete construction of the presented bound, the reader can refer to the ref-
erences cited in the different part and also to the excellent book Foundations of Machine
Learning [Mohri et al., 2012].

Uniform Deviation

As stated before, generalization bounds are based on the convergence of empirical quan-
tities to their means [Vapnik and Chervonenkis, 1971] and resort on the law of large
numbers (see. Intuitively, the larger our training set is, the closer the empirical risk will
be to the expected value, i.e.:

tin LSy b)) = B [ely, b))
=1

m—oo m - (y:x)~
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The bound is said to be uniform because it holds for any hypothesis h € H.
To get such a bound when the size of H is finite, we need to estimate the probability of
the following event:

{216171_)[ ’Rg(h) - ng(h)‘ > e} :

The probability of such an event can be estimated using the Hoeffding inequality
and the Union bound. It leads to the following result [Bousquet et al., 2004].

Theorem 5.1: Uniform Generalization Bound

Let H be a set of hypotheses of finite size, S a training sample of size m drawn
i.i.d. from D, ¢ a loss function which takes its values in [0,1] and § > 0. Then, for
any h € ‘H, with probability at least 1 — §, we have:

RER) < RY(H) + \/mm\ +In(2/8)

2m

When the space H is not finite, e.g. in the case of a set of linear classifiers in RY
where the parameters which define a linear separator belong to R, we need another
method to measure the size or complexity of the set of hypotheses. A way to measure
the complexity is the VC-dimension, noted V' C(#H) and introduced by Vapnik and Cher-
vonenkis in the 70s [Vapnik and Chervonenkis, 1971].

Another way to measure the complexity of a set oh hypotheses is the Rademacher com-
plexity [Bartlett and Mendelson, 2003, Koltchinskii and Panchenko, 2000]. Informally, it
measures how the set of hypotheses is able to fit noise in the dataset.

However, these two measures are usually hard to estimate for most of the problems (ex-
cept for linear ones).

Fortunately, it exists an other to establish generalization bounds for convex opti-
mization problems using the Uniform Stability framework.

Uniform Stability

This framework is more recent [Bousquet and Elisseeff, 2002| and is not directly based
on a measure of complexity of the set of hypotheses. It resorts on the concept of stabil-
ity. Roughly speaking, an algorithm is stable if its output does not change significantly
under a small modification of the training sample. More precisely, we focus on uniform
stability: we are looking for the greatest modification in the loss function under a small
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modification of the training sample. A more formal definition is given below.

Definition 5.3: Uniform Stability

A learning algorithm A has a uniform stability in % with respect to a loss function

¢ and parameter set 6, with 8 a positive constant if:
VS, Vi : , B
, Vi, 1 <i<m, sup|l(fs,x) —€(0gi,x)| < —,
x m
where S is a learning sample of size m, 6g the model parameters learned from S,
Ogi the model parameters learned from the sample S* obtained by replacing the
i" example x; from S by another example x/ independent from S and drawn from
D. {(0s,x) is the loss suffered at x * .

“Note that the authors also provide a definition of stability in which an example is removed.
For the sake of convenience, we rather use this definition throughout this document. Indeed, we
keep the same number of training instances from a set to another.

The constant 8 depends on the properties of the loss function but also on the regu-
larization term of the minimization problem. The property of uniform stability has been
shown to hold for a wide range of minimization problems [Bousquet and Elisseeff, 2002].
Using the convexity of the loss function and the Mc Diarmid inequality we get the fol-
lowing generalization bound with a rate of convergence in O(1/y/m).

Theorem 5.2: Uniform Stability based Bound

Let § > 0 and m > 1. For any algorithm with uniform stability 5/m, using a loss
function ¢ bounded by K, with probability at least 1 — ¢ over the random draw of

S we have:
208 Inl/é
(0s) < RS =+ 4B+ K\ ——
RY(6s) < RE(0s) + = + (48 + K)\ 5 2%,

where RY(+) is the true risk and R%(+) its empirical estimate over S.

The previous bound has a global convergence rate in O(1/y/m) and depends on
two parameters: S the constant of uniform stability of the algorithm A and K an upper
bound on the loss function /.

This generalization bound is more informative in practice and both terms are easy
to compute. Moreover, compared to the two previous frameworks, it is consistent with the
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Figure 13: Evolution of the Empirical and True Risks and the the value of the bound
according to the complexity of the set of hypotheses,i.e. the value of the hyper-parameter
of the model.

practice in Machine Learning, i.e. it takes into account the regularization term which is
often used in the minimization problems. Furthermore, the constant of uniform stability
can be show, to be a decreasing function of the hyper-parameter A (associated to the
regularization term). The impact of the hyper-parameter value is depicted on Figure 13
and shows that is important to find the right value in order to find the best solution.

We will see that is easy to build such bounds on convex regularized optimization
problem for both classification and regression tasks. It only requires some tools in linear
algebra and the definition of convex function.
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Figure 14: Ilustration with some figures of how to split the sample to train-test sets

6 Learning Procedure

Before presenting different algorithms used in Supervised, it is important to describe the
way we will learn a model. The aim of this section is to describe the good way to study
an algorithm and to tune your hyper-parameters when one or several are present in the
optimization problem.

We also use this section to make some reminders about convex optimization and
in particular about gradient descent which can be useful in most learning algorithms.

6.1 How to train and tune a Model

Let’s imagine that we want to solve a certain task in practice, such as a classification
task, and that for this we have a data set labeled (y;, ;). Our goal is then to learn a
certain hypothesis h from our data that is able to solve this task in an optimal way with
the data we have. We also want our model to be able to generalize optimally on new
data that it has not yet encountered. This last point is important because it allows us to
develop algorithms that can be put into production to solve certain tasks automatically.

The first question that arises is:

How to measure the efficiency of our model on data that it has not yet
encountered, starting from the data I have?

This is the first step of an experimental protocol in Machine Learning. In order
to evaluate the performance of the model learned from our dataset, we will start by
separating our dataset into two sets. The first set will be a training set and the second
set will be called the test set (see Figure 14).
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Training set This set is used to learn the parameters of the model, e.g. the parameter
of a linear seperator or the parameters of a linear model. The algorithm has access to
the features x; and the label y; of the data in order to be trained.

Test set This set is used to evaluate the model once it has been learned. The prediction
is only based on the descriptors of the data x; and the label is used a posteriori only
to check if the prediction made by the model is correct or nor, i.e. to evaluate the
performance of the model on new data, i.e. data that has not been encountered before.

Usually, we keep approximately 2/3 of the examples to train the model and the
remaining 1/3 to test the model. It is important to keep a large amount of data to train
the model, so that we are able to capture all the specificities of the data. Indeed, the
more the data you have, the more they will describe the underlying distribution. How-
ever, it is also important to keep enough example in the test set so that the observed
results are statistically significant.

But what about the hyper-paremeter tuning ?

The previous presented methodology to evaluate the model does not solve the
problem of hyper-parameter tuning. The first thing we can do is to mimic the previous
procedure but on the training set ! So we can have access to a sort of test set, called
validation set, that can be used to evaluate the performance of the learned model with
each values of the hyper-parameter. More concretely, let us imagine that we aim to learn
an hypothesis h which depends on a parameter 8 and on a hyper-parameter A. To tune
the value of A we first select a range of possible values for A, we note them A; and the
process works as follows:

1. Split the dataset into training set - test set
2. Split the training set into learning set - validation set
3. For each value of A;:

(a) train your hypothesis (i.e. learn the parameter ) using \; using sur learning
set

(b) test the performance of learned model on the validation set. It gives you a
performance p;.

4. Keep the hyper-parameter \; associated the highest value p;, noted #pyax

5. Learn a model with all the training set using the hyper-paramter value A

Tmax

6. Test this model on the test set
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Figure 15: Hlustration with some figures of how to split the sample to train-test sets

The splitting process is illustrated on Figure 15. Note that once the best hyper-
parameter value is found, the model is train again using a larger amount of data. By
doing so, we hope that we will be able to improve the performance. Furthermore, by
doing so, we will be able to detect if the model suffer from over-fitting, i.e. the validation
performance will be lower than then one observed on the training set, or under-fitting,
i.e. the validation performance will be greater than then one observed on the training set.

However, it is possible to improve this tuning technique. Indeed, this method has a
small flaw, the validation is based only on a very small subset of the data, so potentially
on a very small part of their distribution.

In the previous section, we discussed cross-validation as a way to tune hyper-
parameters. What does this consist of 7 Let us illustrate it using Figure 16.

In this case, the training is no more seperated into two groups, we will instead
separate into k groups or k folds. The tuning process is then the following:

1. For each value A; of the hyper-parameter

(a) at the first round, you select the first fold as the validation set and the k& — 1
others as the learning set. This allows us to obtain a first measure of perfor-
mance pj.

56 - Statistical Supervised Machine Learning



D Validation Set
- Training Set

Round 1 Round 2 Round 3 Round 10
validation g3, 90% 91% 95%
Accuracy:

Final Accuracy = Average(Round 1, Round 2, ...)

Figure 16: Hlustration of the cross-validation process using a 10 fold cross-validation.
The training set is divided in 10 folds or groups. The model is learned using 9 folds and
is validated on the remaining one. At each round, we change the validation in order to
browse the whole dataset. Thus the final performace, here the accuracy, is computed as
the average of the 10 values measured on the validation fold at each round.

(b) at the second round you select the second fold as the validation set and the
k — 1 others as the learning set. This allows us to obtain a second measure of
performance po.

(c) ...
(d) at round k you select the fold k as the validation set and the k — 1 others as
the learning set. This allows us to obtain a last measure of performance py

1
(e) compute s; = Z Zle p1, i.e. the average score obtained at each round.

2. Keep the hyper-parameter \; associated the highest value s;, noted imax

3. Learn a model with all the training set using the hyper-paramter value A

Tmax

4. Test this model on the test set

This tuning method allows us to run the whole data set and thus a larger part of
the underlying distribution. On a practical level, it will therefore bring better results.
However, it requires to learn as many models as we have groups (i.e. k) and as we have
values of hyper-parameters to test.
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In what has just been presented there is mention of performance measures with-
out ever having explained what they are. In Section 5.1, we have already hinted at a
potential performance measure, called accuracy, when we talked about the error rate of
our algorithms. The next section is devoted to the presentation of classical performance
measures in classification and regression.

6.2 Performance Measures

The nature of the used performance measure depends on the nature of the problem, i.e.
classification or regression tasks.

As in the previous section, we will denote x as the feature vector and y as the label
or the value the real value to predict. We will also denote y = h(x) as the output of an
hypothesis h.

6.2.1 Regression tasks

In regression tasks, where the output space Y C R, we already have met several perfor-
mance measure.

The most used is the Mean Square Error (MSE) which consists in computing the
mean value, over all examples, of the squared difference between the predicted value gy
and the true value y:

1 & .
1=1

If we skip the constant 1/m, the MSE can be seen as the ¢, norm of the vector

y—-y-

This measure has the main advantage to be convex and differentiable and can thus be
directly optimized. It is not uncommon to consider also the Root Mean Square Error
(RMSE) when the squared deviations become very large so as not to create a numerical

problem :

m

1 .
RMSEh = EZ(yl—yz)Q
=1

It is certainly the most used performance measure in regression. However, it has an
important flaw, it is very sensitive to outliers, i.e. when a deviated data is far from the
regression line, its value becomes very quickly important. This also leads to an important
bias in the models that will try to get closer to this outlier (see Figure That is why we
often use an other performance measure which is Mean Absolute Error (MAE), which is
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Mean Square Error value: 124.78 Mean Square Error value: 831.72
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Figure 17: Caption

the mean value, over all examples, of the absolute difference between the predicted value
¢ and the true value y:

1 m
MAE), = — Z lys — il
=1
If we skip the constant 1/m, the MSE can be seen as the ¢; norm of the vector y —y.

Other performance measures have also been met to measure the quality of a re-
gression model : AIC and BIC criterion or R squared value.

6.2.2 Classification tasks

In this section, we present different metrics or performance measures that are suited in
a binary context. However, they can easily be extended to the multi-class setting (for
some of them ) as it will be shown.

We will consider a binary classification problem with two classes: y = —1 and
y = 1. The class y = 1 will be called the positive class and the class y = —1 is the
negative one®. With this setting, we can compute several performance measures using
a Confusion Matriz an example is given in Table 2. Using this table, an example from
the positive class predicted positive by the learned model is said to be a True Positive
(TP). 1f it is miss-classified it is called a False Negative (FN). Similarly, for the majority
class, a well classified example is called a True Negative (TN) and a False Positive (FP)
otherwise.

8We will sometime use the class 0 to denote the negative class for the sake of simplicity to present
some of the algorithms.
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Predicted positive Predicted negative
(h(x) =1) (h(x) = 0)

True Positive (TP) | False Negative (FN)

Actual positive

(y=1)
Actual negative - _
(y = 0) False Positive (TP) | True Negative (TN)

Table 2: Confusion matrix for a binary classification task. The label is denoted by y
and the prediction by h(x).

Standard Measures The most common performance metric used to evaluate an al-
gorithm is the Accuracy, also known as the complementary of the Error rate. Using the
notations of Table 2, they are defined as:

Definition 6.1: Accuracy - Error rate

Let us consider a set of m examples and an hypothesis A which leads to a given a
confusion matrix using the examples. The Accuracy of h is then defined by:

TP+TN
m

Accuracy =
and the Error rate is defined by :

FP+FN
Error rate =1 — Accuracy;

While this measure is the most used to evaluate the performance of the algorithms,
it is not relevant it all settings, e.g. when the dataset is said imbalanced, i.e. when a
given class is less represented than the other.

Exemple 6.1. Let us consider a dataset with m = 100,000 examples. Suppose that
the number of positive examples is equal to my = 1,000 and the number of negative
examples is equal to m_ = 99,000. Then a trivial solution, which consists in predicting
all the examples as negative, would lead to an accuracy of 99%. It is good at a first
glance, but the solution is not satisfactory because the learned hypothesis was not able to
find examples of the positive class.

To overcome the issue of the above example, we need to use another performance
measure which takes into account the capacity of the predicted model h to capture the
minority class :
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Definition 6.2: Sensivity or Recall

Let us consider a set of m examples and an hypothesis A which leads to a given
a confusion matrix using the examples. The Sensivity, also known as Recall, of a
classifier h is defined as:

TP

Recall = m—m

By definition, the Recall returns the percentage of examples in the class of interest
the model is able to capture. The higher this value (i.e. the closer to 1), the more ex-
amples in the minority class are retrieved. By measuring how a model is able to detect
the examples that belong to the minority class, the Recall seems to be a good candidate
for a performance measure to use in imbalanced scenarios, e.g. in the context of medical
diagnosis, missing a possible patient with a serious disease can be fatal.

In some banking it is important to be confident on its positive prediction, e.g. when
an individual is denied a more or less fundamental right, the decision had better be the
right one, otherwise there could be serious consequences for the company or organization
that made the decision. To this end, we prefer the model to be confident on its positive
predictions, i.e. we focus on the Precision of the model.

Definition 6.3: Precision

Let us consider a set of m examples and an hypothesis h which leads to a given a
confusion matrix using the examples. The Precision, also called Positive Predictive
Value, of a hypothesis h is defined as:

TP

Precision = TP—|-—FP

Other performance measures [Konukoglu and Ganz, 2014, Branco et al., 2016] based
on the classification made by h are given below:

T N
True Negative Rate = m, False Negative Rate = _FN T TP7

FP TN
False Positive Rate = FPLTN Negative Predictive Value = TN+ FN

Such measures can be seen as complementary to the Precision and Recall. Note
that the True Negative Rate is also known as Specificity. As shown before, the metric
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Graph of the F-measure for B =1
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Figure 18: Illustration of the F-measure with 50 positive instances and 500 negative
instances. The axes represent respectively: FN, FP and the value of the F-measure.

used depends on the user preference [Torgo and Ribeiro, 2007, Torgo and Lopes, 2011].

In imbalanced settings, as in fraud detection, it is important to take into account
both the precision and the recall of the model of the model This is the goal of the
F-measure introduced in the seventies [Rijsbergen, 1979].

A Versatile Measure : the F-measure The F-measure is a good performance mea-
sure when a user wants to focus on the behavior of a model on a minority class. It
is highly used in information retrieval [Sanderson, 1994| and obviously in Fraud and
Anomaly Detection [Gee, 2014, Bahnsen et al., 2014, Bolton and Hand, 2002]. It is de-
fined as the harmonic mean of the Precision and the Recall and depends on a parameter

B:

1+ ?)Precision x Recall (1+p5H)TP (14 B%)(P - FN)

(
F = = == .
A 32 x Precision + Recall (14+p82)TP+B2FN+FP (1+p3%)P—-2FN+FP

An illustration of the F-measure is given in Figure 18. The F-measure is a flexible
measure. By modifying the § value, the user is able to control the importance of either
the Precision or the Recall. If § = 1 the same weight is given to both Precision and
Recall. If the user wants to give more importance to the recall, he can choose a value of
B greater than one. By choosing 8 < 1, he will give more importance to the precision.

Exemple 6.2. Let us take an example of a sample of 1000 instances in which the mi-
nority class represents 1% of the data. So we have 10 positive examples for 990 negative
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ones. Let us also consider two hypothesis, hy and ho, which have the following confusion
matrices:

Predicted positive | Predicted negative

hy  Actual positive TP =3 FN=T7
Actual negative FP=0 TN =990
Predicted positive | Predicted negative
hy  Actual positive TP=9 FN=1
Actual negative FP=6 TN =984

Both of these classifiers have an error rate less than 1%. The first classifier, hy has
a Precision equal to 1 and a Recall equal to 0.3 while for the second classifier ho, these
two values are respectively equal to 0.6 and 0.9. These two classifiers lead to completely
different F-measures (with 8 = 1): 0.46 for the first hypothesis and 0.72 for the second
one. Despite the high precision reached by the first classifier (equal to 1), the F-measure
remains lower than the one achieved by the hypothesis hs.

Compared to the Accuracy and despite how useful such a measure can be in im-
balanced scenarios, it remains hard to optimize. The F-measure presents two main
drawbacks: (i) it is non-linear and (ii) non convex, as depicted on Figure 18. Because
of (i), it is hard to derive generalization guarantees for such a measure. Furthermore,
we can not use standard gradient descent algorithms to optimize it. Because of (ii), an
optimization algorithm can fall into local optima that might be far from the optimal
solution. However, the literature is rich of studies and algorithms which aim to deal with
such a task [Zhao et al., 2013, Busa-Fekete et al., 2015].

6.2.3 Other Performance Measures

The Class Weighted Accuracy, noted CW A and proposed by [Cohen et al., 2006] is sim-
ilar to the F-measure. However, it does not take into account the Precision anymore
but the Specificity instead, which is directly linked to the Precision of the model. It is
expressed as a convex combination of both Sensitivity (i.e. the Recall) and Specificity ,
i.e. for any a € [0,1] it can be expressed as:

CW A = « X Sensitivity + (1 — ) x Specificity.

As for the 8 parameter of the F-measure, the user can also choose the value of the
parameter «.

Another evaluation metric used in imbalanced scenarios is the G-mean measure.
As for the Class Weighted Accuracy, its expression depends on both Sensitivity and
Specificity. It is the square root of the product of these two quantities:
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Figure 19: ROC and AU ROC for two different classifiers. The classifier associated to
the red curve achieves a larger AUC than the blue one.

G-mean = \/ Specificity x Sensitivity.

This measure is used in imbalanced scenarios because it takes into account the
information on both classes but gives the same importance to each class.

A last popular evaluation metric used in imbalanced scenarios is the AUC ROC [Metz, 1978,
Cortes and Mohri, 2004], the “Area Under the Receiver Operating Curve”. This metric is
used when the learned model returns a score, such as a confidence in a given prediction.
The training examples can be ranked according to this score and a curve which plots the
Recall according to the False Positive Rate is drawn using the different scores obtained
by the model (see Figure 19). The closer to 1 the value of the AUC is, the better the
model is.

Compared to the previous measures, the AU ROC allows us to can visualize the
performance of the model. Furthermore, it is usually used to choose the appropriate
threshold for the given task. It also gives the possibility to plot several models on a
single graph and choose the one best suited for a given purpose. The ideal model is the
one that achieves a True Positive Rate equal to 1 while the False Positive Rate remains
close to 0, i.e. when all the examples of the minority class have a greater score than the
examples of the majority class.
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There exist other measures used in imbalanced scenarios, such as the Average
Precision, the H-measure or the Precision-Recall curve to cite a few [Frery et al., 2017,
Ferri et al., 2009, Jeni et al., 2013, Branco et al., 2016, Behl et al., 2014]. Despite most
of them were suited for imbalanced tasks, they can also be used to evaluate performances
in standards contexts.

Now that we have explained how to learn, tune and evaluate a model in general, it
is time for us to present some fundamentals algorithms in supervised Machine Learning.
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7 Supervised Algorithmes

7.1 Surrogate losses

In Section 4, the generalization bounds based on uniform deviation has been presented
for a loss ¢ function taking its values in [0, 1], typically, the 0-1 loss, in the context of
classification. However, as said before, such loss is hard to optimize from an algorithmic
point of view due to its non-convexity and non-differentiability. So, we rather use some
convex (and sometimes differentiable) relaxation, also called surrogate losses, to learn
our hypothesis h(-,-), where the two variables are respectively the parameters w of the
model and an input x. Both the 0-1 loss and some of its surrogates are presented in
Figure 20.

Among these surrogates, the hinge loss is used when training a Support Vector
Machine [Boser et al., 1992, Vapnik and Cortes, 1995]. The hinge loss is used in the
context of classification and is defined by:

(h(x),y) = [L—yh(w,x)],,
= max(0,1 — yh(w,x)).

Another well known surrogate loss function is the exponential loss which is widely
used in the context of boosting [Friedman et al., 2000]:

U(h(x),y) = exp(—yh(x)).
Compared to the hinge loss, the exponential loss gives a more important weight on the
errors and never equals 0.

Finally the logistic loss, used when training a logistic regression model [Mohri et al., 2012],
is defined by:

(h(x)y) = lniz) In (1 + exp(—yh(x))).

Note that this definition holds when y € {—1,1} and h(x) belongs in R or [—1,1]. There
is another definition if we focus on the probability of belonging to a class or an other,
Le. if y € {0,1} and h(x) € [0, 1], such variant [Cox, 1958] is defined by:

(h(x),y) =y (1 +exp(=h(x))) " + (1= y)In (1 1T expl(h(x))> |

Now we present the different algorithms that can be used in supervised learning.
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Figure 20: Examples of loss functions used for classification tasks: the hinge loss (linked

to the SVM algorithm), the logisitic loss (used in for logistic regression) and the expo-
nential loss (used in the context of boosting).

7.2 k-Nearest Neighbors

A description of the algorithm The k-Nearest Neighbors algorithm [Cover and Hart,

is a non parametric method which does not impose any assumption on the underlying
distribution. To predict the label of a new instance x’, it computes the “distances” be-
tween the new query x’ and the set of samples x; € S. Then, using a selected k value, it
looks for the k& nearest neighbors of x’ and predicts the label of x” using a majority vote,
i.e.

y(;c’) = arg max—~
yey

In other words, the predicted label y(x’) is equal to the most represented class y
in the k-neighborhood of the new query x’.

Exemple 7.1. An example of the use of the k-NN algorithm is drawn on Figure 21. It
shows the importance of the choice of the k value to predict the label of a new instance.
We see on this example that the new point is closed to points of both classes, that is why
its prediction varies according to k. It is “red” when k is equal to 3 or 5. However, if we
consider k =9, it is predicted “blue”.

For small values of k, for instance when k = 1, the algorithm assigns to the new
example x’ the same label as the one of its closest data in the training set, i.e. similar
examples shall share the same label. Such a rule is the simplest one and it has been
shown by [Cover and Hart, 1967, when m is large enough, that the error rate is no more
than twice the bayesian error, i.e. the smallest error we can achieve given the distribution
of the data. Conversely, when we increase the value of k£ we tend to smooth our decision.
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Figure 21: Illustration of the k-NN using the euclidean distance. We show that the
predicted label depends on the value of k.

When k is very large (typically when & = m), the label given to a new data is no more
than the majority class in the dataset. It raises one important question: which value of

k shall we take? In practice, we usually use a cross validation procedure to choose the
best k value.

Some problems The dimensionality d of the data and the choice of the distance are
also important for such an algorithm. Indeed, when we are dealing with high-dimensional
data, some features (or attributes) sometimes non informative can have a huge impact
in the computation of the distance. This leads to a classification based on non relevant
features and poor performances. Furthermore, some features can naturally be more
important in the distance computation because they take higher values than the other

one. Most the of the time, the distance we are dealing with is the Euclidean one, i.e. for
x,x’ € R%:

d
d3(x,x') = [lx = X3 = ) _(z; —«})*.

=1

Exemple 7.2. Let us consider the following dataset with the three different descriptors
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Ly 2 [ 2 |2 |
1103 089] 252
-11-0.110.23| 652
-1 02| 07 | 122
11038 -08] 252

If we compute the Fuclidean distance between the first and second erample, we

have:

d3(x1,%2) = ||x1 — %13,

d
=Y (a1 — 795)%,
j=1

= (0.340.1)% 4 (0.89 — 0.23)2 + (232 — 652)?,
~ (232 — 652)°.

The first and second features have no impact on the the computed distance, it only
depends on the third variable.

To overcome this issue, we can modify the distance we are considering. We can
also with the Manhattan distance (or L;-norm)?,

i.e. for x,x’ € R%:

d

di(x,x) = [lx =xl1 = Y [a; — aj].
j=1

We can also give a weight w; to each features according to impact we want to give
to some of them. For instance, if a feature is known to be a noisy one, we can decide to
give a weight close to 0. However, if it is know to be informative, we can give to a weight
close to 1. The choice of the weight can be guided by the domain knowledge.

Finally, another method we can use is to scale our data, so that all the features
values lie in the same range of values or will describe a normal distribution. The trans-
formation that are usually done are the following :

9Note that all of these distances can be summarized into the definition of Ly-norm, for all p > 1,
defined for x,x’ € R% by

dp(x,x') =
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e Normalization: for each feature vector v; we compute

Vi
)

Vi <
J
0j

where p; and o are respectively the mean and the standard deviation values of
the feature vector v;.

e Norm hypercube: for each feature vector v; we compute

Vj — min Vj

Vj<—2>< — 1.

max V; —INin vy

e Norm hypercube 0-1 (also called min-max normalization) for each feature
vector v; we compute

Vj — min Vj

\Zm - .
max v; —minv;
The objective of the first transformation is to transform the data so that they follow
a centered, reduced normal distribution, i.e. for all j € [1,d], v; ~ N (0,1). The second
and third transformations are very similar and simply consist in shifting the values of
the different descriptors so that they are in the interval [0,1] or [—1,1].

With the first transformation, we modify the variance of the data, i.e. all features
will have the same variance and thus the same weights (because they all have implicitly
the same quantity of information). When you “norm” your feature vector, this does not
happen.

Exemple 7.3. Let us consider the previous data from Ezxample 7.2, we will apply the
first and second transformation on this data set

ly | @ | 22 | @ | ly o [z | 25 |
1| 066 084 | -0.33 1 1 1 0.21
-1 -1.45|-0.03| 1.46 -1 0 | 0.61 1
-1 018 | 0.59 | -0.80 -110.75] 0.89 0
1] 066 |-1.401-0.83 1 1 0 0.21

Remark: this last suggestion is common to all algorithms based on the notion of distance
or inner product. So the fact to rescale data using one of the above presented method
can be used with any other learning algorithms. Most of the time, data normalization
or scaling is done, so keep it mind when you will do some experiments. This generally
allows us to improve the performance of the algorithms when we do not have an expert
able to inform us about the importance of the features. On a practical level, it also makes
it easier to compare the algorithms between them.
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Algorithm 1: k-Nearest Neighbor Algorithm
Inputs : Training set S = {(x;,vi)}i~;; an example to classify x', k the
number of nearest neighbor
Output: the label ¢’ = y(x) of the example to classify

:fori=1,...,m do
compute the distance d(x;,x’)
end for

sort the distances by increasing order

keep the k-nearest neighbor among the sample S

count the number of occurrences of each class among the nearest neighbors
set ¢ equal to the most frequent class =0

Algorithm and Complexity The algorithmic procesure of the k-NN algorithm is
described in Algorith 1. As the reader may see, to predict the class of a new instance x/,
we need to keep in memory all the training set and to compute the distance of the new
example to all of the training instances.

As a consequence, the complexity of this algorithm is in O(nd + nk) for distances
computation (nd) and neighbors selection (nk). Furthermore the required memory for
this algorithm is in O(n). This little study shows that is algorithm is not well suited for
large datasets.

Refinement of the Algorithm As we have seen one drawback of this algorithm is
that it needs to store the entire dataset and to compute all the distances to the training
samples to predict the label of a new one. However, we can reduce the computation time
and size using approaches based on the triangle inequality [Elkan, 2003], or on structured
segmentations [Bentley, 1975] or by selecting the most relevant instances of the training
set as in Condensed Nearest Neighbor [Hart, 1968] presented in Algorithm 2. This al-
gorithm selects a subset S from from the training data S, such that the 1-NN with S’
can classify the examples almost as accurately as the 1-NN does with the whole data set S.

Other refinements of the k-NN exist, the most common is a weighted k-Nearest
Neighbors [Dudani, 1976]. The idea is simple and consists in assigning weights to all
training examples A standard weight is the use of the inverse of the distance [Liu and Chawla, 2011].
By this way, we give less importance to the examples that are far from the tested one.

Exemple 7.4. Let us consider an example X' we aim to classify using three instances
(x1,y1), (x2,y2) and (x3,y3) using the 3-NN. The distances have been computed and are
given below:

Ezample | x1 | X2 | X3
Label 1 1 0
Distance | 3 | 4 1
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Algorithm 2: Condensed Nearest Neighbor
Inputs : Training set S = {(x;,vi)}ioy
Output: S’: a smaller sample
1: S = @
2: Select random on example from S, remove it from S and add it to S’
3: for all x; € S do
4:  if x; is miss-classified using S’ and 1-NN then
5 add x; to S’ and remove it from S
6: else
7 keep x; in S
8
9

end if
: end for=0

If we follow the classical classification rule for this algorithm, we should predict this
new data as belonging to class 1 since two of the three nearest neighbors belong to this
class. This situation corresponds to the case where each example has the same weight in
the decision making

On the other hand, let us now imagine that we assign a point to each example which
is equal to the inverse of the distance to the new example X'. In this case, the sum of the

7
weights assoctated with the label 0 is equal to 1 whereas it is only 12 < 1 for the data

having the label 1. With this taking into account of the weights of the voters'’, the new
data x" would then be given the label —1.

The use of such decision rule can be relevant if some region of the space are
sparse and some points are isolated. Another possibility is to learn a new represen-
tation of the data by projecting the data in a (better) latent space [He and Wang, 2008,
Weinberger and Saul, 2009| as is done using a Metric Learning Algorithm.

An interesting reference [von Luxburg and Bousquet, 2004] draws a link between
the nearest neighbor algorithm (the 1-NN) and the next algorithm we will study, the
Support Vector Machine (SVM)

7.3 Support Vector Machine

The Support Vector Machine algorithm (SVM) is probably one of the most known and
used classification algorithm in Machine Learning [Vapnik and Cortes, 1995| for binary
classification.

Othis notion of majority vote or weight of the voters is very common in Machine Learning and
especially in PAC Bayesian Learning. Despite we will not talk about it in this course, we will see that
majority vote is involved in many algorithms such as boosting as presented in Section 8
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Figure 22: Representation of different linear separators for the classification task. The
separator shown in solid line is the solution obtained with a SVM algorithm that max-
imizes the margin. The two other separators, represented in dotted line, are two other
classifiers that lead to the same performances.

Linear SVM The SVM algorithm outputs an hypothesis h which returns the label of
an example x. This hypothesis is an (affine) hyperplane which separates the space into
two spaces. e.g. {—1,+1} as follows:

-1 if (w,x)+b<0,

. (2)
+1 if (w,x)+b>0.

h(x) = sign[{w,x) + b] = {

When the two classes can be perfectly separated, there are several hyperplanes,
i.e. several values of (w,b), which can well separate the data. The idea developed
by boser1992training is to choose the one that has the largest margin, but why? Let us
have a look at Figure 22 to understand.

To understand, why, we just need to remember our main goal in Machine Learning,
which is to find the best classifier that is able to generalize best on new data. If we focus
on the two dotted lines, we see that are really close to the examples from one class, at
test time we increase the risk that a new data, coming from the same distribution, is
located on the wrong side of our separator. Thus to avoid this problem and then select
the one that is able to generalize better on new data, we select the one with the largest
margin.

73 - Statistical Supervised Machine Learning



In Figure 23, the margin -y is defined by the distance between the hyperplanes of
equation (w,x) + b = +p. Note that we can rewrite these equations as (w,x) +b = +1
by a normalization of (w,b). Let us now consider the points x_ and x4 which lie on the
two hyperplanes as depicted in Figure 22. Each of these vectors can be decomposed as
x =xV 4+ xwl, where x% is colinear to w and xV~ is orthogonal to w. These remarks
lead to the following relations:

hx) —hix-) = 2,

<W7X+>+b_ (<WaX*>+b) = 2a
(w,x¥) + (W, XV ) b — ((w,x™) + (w,x¥ ) +b) = 2,
(w,x¥) — (w,x¥) = 2. (3)

Furthermore, the margin ~, i.e. the distance between the two hyperplanes is defined
w

as the projection of the vector x; — x_ on the unit vector W, i.€.
Wil2
v = <X+ — X—7W>
[[wl|2
Thus we have:
v = <X+ - X—7W>
w2~
1
||WH2 <X+ — X, W>7
————
1 w w
= M<W X+> - <W7X7>7
3
2
y =
w2
2
[wily lwll

Thus, maximizing the margin ~ is equivalent to minimizing

2

The minimization problem associated to hard margin SVM is the following:
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<W7 X> + b= _P\'

Figure 23: Mlustration of the SVM algorithm when the problem is linearly separable.
The circled points are the support vectors. The dotted lines represent the hyperplanes
of equation (w,x) +b = £p and the distance between the two hyperplanes is equal to ~.

Definition 7.1: Hard Margin SVM problem

Let S = {(xi,v:)}[*; be sample of size m. Then, the best linear separator using
the SVM algorithm is the solution of the following optimization problem:

. 1 2
min o [|wll;
(w,b)ERI+L 2
s.t. yi((w,x;) +b) > 1, foralli=1,..,m.

Where the inequality constraint is in fact a synthetic form of the classification
rule (2).

For the moment we do focus on how to solve such an optimization problem (which
is here a convex and constrained optimization problem). We will see that, in practice,
there are solvers capable of solving these problems without taking care of the mathemat-
ical aspects and difficulties.
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The problem studied here represents an ideal situation where the data are linearly

separable. However, in most of the real cases, the two classes are not linearly separable
(see Figure 24), and some points violate the constraint: y;((w,x;) +b) > 1. It means
that the point can be on the wrong side of the hyperplane or on the right side of the
hyperplane but inside the margin.
So we need to define a relaxation of the optimization problem in which that kind of
errors are taken into account. These errors take the form of a vector of slack variables
& = (&,...,&n) and are included in the optimization problem. This lead to a new op-
timization, called soft margin SVM where the aim is to find a right balance between
margin maximization and model errors:

Definition 7.2: Soft Margin SVM problem

Let S = {(xi,:)}; be sample of size m and let us denote & = (¢, ...,&y) the
vector of slack variables. Then, the best linear separator using the SVM algorithm
is the solution of the following optimization problem:

. 1 9 C .
min Swl e 2y
EeR™, (W,b)ERd‘H 2 ” ”2 m 21_1 £z (4)
s.t. yi((w,x;) +0) >1-¢&, foralli=1,..,m,

§& >0, foralli=1,...m

Compared to Definition 7.1, a term g 221 &; is added, which represents the the
cost of violating the constraints. In the ﬁrstngontraint, we allow some violations by adding
a term —&; which is necessary positive! The balance is made using a hyper-parameter C'
that has to be tuned during the learning process.

Proposition 7.1: Equivalent Formulation Hard Margin SVM

Let S = {(xi,:)}; be sample of size m and let us denote & = (¢, ..., &) the
vector of slack variables. If we take the constraints into account, the optimization
problem 4 can be rewritten:

m

I3+ 31— wilw. i) + 0,

(w b)eRd+1 2 pat

where [z]4+ = max(0, ), i.e. the hinge loss.

76 - Statistical Supervised Machine Learning



-~

(W, x)+b=—p ™

Figure 24: Illustration of the SVM algorithm when the problem is not linearly separable.
The circled points are the support vectors. The dotted lines represent the hyperplanes
of equation (w,x) +b = £p and the distance between the two hyperplanes is equal to ~.

Proof. To show this result, we only need to focus on the slack variables € that are positives
using the second constraint.

If we look at the first one, the value of the slack variable &; is equal to zero if y;({(w, x;) +
b) > 1, otherwise it is equal to the difference, i.e.

0 if 1 —y;((w,x;) +b) <0,

Vizl,...,m, fl:
1 —y;({(w,x;) +b) otherwise.

This definition can be summarized as :

O
However, such a problem is hard to optimize, even if it convex, it is not smooth.

Furthermore, when the dimension of the data is high, the complexity is in general
O(d?) [Chapelle, 2007]. Thus, we usually solve what we call the dual formulation of
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such a problem to improve the speed of convergence of the optimization algorithm. We
thus prefer to optimize the dual formulation of the problem:

Proposition 7.2: Dual Problem SVM

Let S = {(xi,v:)};", be sample of size m. The dual formulation of the soft margin
SVM described in Definition 7.2 is:

1
mgx —5 Z?il ZTzl Qi 05Y5Yj (xi, Xj> + ZZZI O,
C
st. 0<a; < — foralli=1,...,m, (5)
m
2121 yia; = 0.

The vector ¢ is the vector of Lagrangian variables or dual variables.

Proof. We have to deal with a constrained optimization problem. To get its dual formu-
lation we need to use the Lagrangian of this problem

C m m m
Lwb & B) = S IWIE+ = D6+ D i (1= &~ i (woxi) +8) = Y i
i=1 i=1 i=1

where a¢ and 3 are the vectors of dual variables respectively associated to the first
and second constraint.
We recall that the primal problem is a convex problem, so the solutions are in the space
of values of (w, b, &) verifying:

oL

aiw(wﬂb7£?a’ﬂ):0’ %(w?b’£7a7/8)207 a’nd gg(w7b7£7a’ﬂ):0'

These conditions give us the possibility to express the primal variable (i.e. w, b
and & as functions of the dual ones (i.e. a and 3). Remember, this is what we have
called the Karush-Kuhn-Tucker conditions. We respectively have:

oL m m

87w(w’ b§,a,8) =0, +—= w-— ;yiaixi =0 &= w= ;yiaixi’ (6)
oL m

%(Wvba£7aw@) = 07 <~ Zazyl =0 (7)

=1
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oL

e WhEaf) =0 © i Bi=0 = @i B0 (8)

We just have to use these results and include them in the expression of our La-
grangian.

Llw,b & 0.B) = 5 w3+ ZmZaz( ~ui (w4 0)) - Z%v
——

6
m m m
B £
- 1} : — i=1
_Zozzyz Zyja]X},xl +bza2yu
\H,_/
7 8
1 o= —
- Zzyzyﬂzag (xi, X, 4—Z:§Z><()-|—z:oéZ
ZZIJ ! i=1
m m
_Zzyzyﬂz% (xj,%;) +bx0
i=1 j=1
1 o= —
= iz_:z YilYj Q04 XZ,X] +ZO‘Z

=1

Keep in mind that we have to maximize the Lagrangian w.r.t. the dual variables.
Furthermore Equations(7) and (8) lead to constraints of the dual formulation. O

Note that the dual optimization problem is always a strictly concave problem with
respect to the dual variables. Thus, there exists one and only one solution.
Indeed, the two constraints are linear, thus convex. When it comes to the objective
function, note that it can be rewritten as a quadratic form:

1 7 =
max —ia Ga—i-;ai,
1=

where G is the matrix defined by Gj; = y;y;(xi, x;). This matrix is known as the
Gram matrix and this matrix is Positive Semi Definite.
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Remarks. The dual problem aims to find a solution in a different space, we rather
work in the individual rather than the parameter one. Furthermore, when the solution
of the dual problem is found, it is possible to have an expression of the primal one using
Equation (6) for the value of w. If we want to find the value of b we have to use the
bi-dual formulation, i.e. the dual of the dual problem, but we skip this point here.

If the dual formulation leads to an easier problem to solve when the number of
data is small, it does not solve the problem of non linear separability of the data. To
tackle this issue, we use what is commonly called the kernel trick.

Kernel SVM Instead of using the standard inner product between two examples, we
define a function K (-,-) which takes two vectors as input and returns a real number.
Such function K is called a kernel. We also denote by K its associated matrix, that is
(1) symmetric and (ii) positive semi-definite, i.e.:

(i) V (x,x') € R? x R, we have: K(x,x') = K(x/,x),

(i) V (x;,%x;) € RExR? and V ¢ € R?, we have: ¢/ Ke =Y, Z;n:l cici K(x;,%x5) > 0.

These properties on the function (or matrix) K play a key role and lead to the
following result due to Mercer [Mercer, 1909].

Theorem 7.1: Mercer Theorem

Let X be a compact subset of R and let K be a continuous symmetric positive
semi-definite function, i.e. a kernel. Then, there exists an orthonormal basis of
functions (®;),en and a sequence (A;);jen, where A\; > 0 for all j, such that:

K(x,x) = Y X®;(x)8;(x') = (®(x), 2(x)),
j=1

where ®(x) = (VA1 P1(x), ..., /AjPj(x),...) is the representation of x in a new
space.

Thus, what we call the kernel trick is that there is no need to explicitly know the
transformation ®, the knowledge of K is enough. Furthermore, it gives the possibility
to project the data in a higher dimensional space, called the latent space (possibly of
infinite dimension) in which the classes are linearly separable.

Introducing the kernel K, in the optimization problem 5 leads to the following dual
formulation:
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1
max  —5 >0 D5ty iy K (i, %) + 300, ai,
C
st. 0<a; < —, foralli=1,...,m,
m
Z:‘ril Q; = Oa

There exists a large number of kernel functions (see [Genton, 2002| for a more
complete list of kernels) among which the most used are:

e Linear Kernel: K(x,x') = (x,x’), which is the standard inner product.

e Polynomial Kernel: K(x,x') = ((x,x') + ¢)’, where ¢ is a constant

712
X —X
e Gaussian Kernel: K(x,x') = exp —H22H2 , where o is an hyper-parameter
o
that needs to be tuned. It controls the importance given to the similarity between
two instances. The bigger this value is the less importance we give to two similar

examples and the more uniform is the role of each examples in the dataset.

Exemple 7.5. Let us consider x and z two 2-dimensional vectors and constder the
polynomial kernel of degree 2.

We aim to write this kernel as an inner product, i.e. find the mapping function ®, such
that K(x,z) = ®(x)T®(z).

K(x,z) = (x121 + x222 + 0)2,

=+ a:%z% + x%zg 4+ 2cx121 + 2¢cT020 + 211212229,

T
- (c, 22, V/2ex1, \/2cs, @mg) (c, 22.V/221, V202, \/%2122) :
=®(x)" ®(z),

where @ @ x +— (c, 22 \/2cx1,\ 2cT0, \/20331:62). Using this kernel, we implcitely
project the data in a 5-dimensional space.

Try to apply the same process to show that, with a 3-dimensional dataset and a
polynom of degree 2, the dataset is projected into a space of dimension 6 for ¢ = 0.

Let us now show why the gaussian kernel can project the data into a space of an
infinite dimension. Let us consider two instances x and z in R%. We remind that:

2 2 2
Ix = zll5 = [Ixllz + [lzll; — 2(x,2).
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Thus, we can write!!:

2
K(x,z) = exp (—HX ZH2> ,

202

x|2
=exp| — 952 exp | —

- = (x, 2"
= c(x)e() ) 22

k=0

k
[e.@]
:Z kc(x)xkc(z)z .
Z AN Vi Vil
An example of the use of this two kernel is given in Figure 25. Do you think that
a polynomial of degree 2 is enough in this case to separate the two classes?

2
HZH2
202

> exp (<X(;§’>> ;

Prediction phase With the linear SVM (hard or soft), to predict the label of a new
instance x’, we have to compute

h(x") = sign ((w,x') +b) .

With the kernelized version, the hypothesis (or classifier) takes the following form:

h(x') = sign (Z aiyiK(X’,xi)> )

i=1

Note that, in this case, we need to compute the similarity of the new example to
all the training ones. However, both hypothesis remains linear, they are just working in
different spaces.

A more detailed analysis of the dual formulation We will now take advantage of
the dual formulation presented before and study the link with the primal solution and
also to explain why this model is called Support Vector Machine.

11GQee the development here for fruther details.
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SVM with linear kernel SVM with Gaussian Kernel

X1 X1

Figure 25: Ilustration of the kernel SVM algorithm when the problem is not linearly
separable (linear on the left, gaussian on the right) Blue points represent the negative
class and the positive class is represented by red ones. The colored area represent the
decision boundaries of the learned hypothesis.

For the first point, we first write again the KKT conditions (please refer to Sec-
tion ?? and Theorem ?7? for further details on how to get them) for the Soft Margin SVM
problem (see Definition 7.2) using the previous notations and complete them:

e Stationary Conditions:

or m m

%(Wa b7£7aa18) — 07 < W — ;yiaixi =0 <= w= ;yiaix’b (9)
%(wbﬁaﬂ)—o = ia-~—0 (10)
8b ) b b ) - ) Z:1 ZyZ -

oL C

P = _— = . — D, = : - > .
a&(w,b,ﬁ,a,,@) 0 — o B;i=0, < «;,0 >0 (11)

e Primal Feasibility:

1—& —yi((w,x;) +b)
&

(AVARVAN
(=

Vi=1,...,m. (13)

e Dual Feasibility:
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o > 0, Vi=1,...,m, (14)
/Bi > 07 Vi = 1) -5 M. (15)
e Complementary Slackness:
ai(l1 =& —yi((w,x;) +b)) = 0, (16)
Bi& = 0. (17)

Using Equation (9), we immediately have an expression of w depending on the
dual variables. It remains to have an expression of b the offset in order to the definition
of the primal definition. Unfortunately, in this case, we do not have an expression of b
in the previous conditions

Let us now focus on the Support Vectors. The reader remember that the support
vectors were defined as the point that lie in the margin or in the wrong side of the hy-
perplane. These points were the ones that are essential to define our separator. We are
going to emphasize this and also show the role of each of the other points.

To do so, we are going to focus the complementary slackness conditions defined by
Equations (16) and (17)

Oéi(l — 51 — yi(<W,Xi> + b)) == 0, (18)
i=1
pi& = 0, (19)
. . c .
for all instances i = 1,...,m. Because 0 < o; < —, Vi =1,...,m, we have several
m

possibilities for «;

C
i) if a; = 0, then Equation (11) implies 3; = — and then & = 0 using Equation (17).
m
In this case we can say, using Equation (16) that y;((w,x;) +b) > 1.
So the point x; is correctly classified and outside the margin.

C
ii) if @y = —, then Equation (11) implies 8; = 0 and then &; > 0 using Equation (17).
m
In this case we can say, using Equation (16) that y;((w,x;) +b) < 1.
So the point x; is miss-classified or on the margin.

C C
iii) finally, if 0 < a; < —, then Equation (11) implies 0 < 8; < — and then & = 0 using
m m
Equation (17). In this case we can say, using Equation (16) that y;((w,x;)+b) = 1.
So the point x; is on the margin.
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Figure 26: Example of a linear regression where the aim is to predict the score according
to the age the person. The solution obtained using a linear regression is represented in

red.

If we combine this analysis with the fact that w = Z:’il ;i X;, we can note that
only the point that are outside the margin do not contribute to the definition of the
hyperplane! This information is important from a computational point of view, it means
that we do not need to use all the training points for the prediction phase, i.e., there is
no need to compute all the similarities.

Later, we are going to see that it also possible to improve the learning phase of the
(kernel) SVM using an approximation of the latest.

The next algorithm we will study can be used both for regression or classification
task depending on the nature of the output.

7.4 Linear Regression and Logistic Regression

An example of linear model has been introduced before with the support vector machine.
In this section, we will present the well known linear regression and its equivalent for
classification task, that logistic regression.

Linear Regression Linear regression are mainly used when we aim to predict a real
value e.g. the price of an house or the score obtained at a given exam as illustrated in
Figure 26.
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As for the previous algorithm, in its simple formulation, the learned model takes
the form of straight line. Given S = {(x;, )}~ € R x R, we aim to find the best line
which approximates the scatter plot, i.e. to learn a hypothesis i of the form:

h(@, X) =0y + 011 + O2x0 + ... + Ogx4.

To learn the parameter 6 of the model we have to minimize a loss, as for SVM.
In the case of regression tasks, as stated in Section 6.2, we usually minimize the Mean
Square Error (MSE).

Proposition 7.3: Linear Regression

We consider the following probabilistic model for our data.

Y = 60X +e,

where Y it the predicted variable and X is the set of variables that are used for
the prediction and e represents the error of the model.
We consider a hypothesis i of the form:

h(@, X) =0y + 011 + O2x0 + ... + Ogx4.

Given a set S of m examples, X = (x1,X2,...,Xm) and y = (y1,¥2,...,Ym) then
the solution of Mean Square Error problem:

m

. . 2 _ . L 2
iy = e = it ) (g — b))

is given by:

6 = (XTX)"'xTy.

Proof. The proof is exactly the same as the one studied during the linear model course.
O

This first model is pretty simple and an analytical solution is available, meaning
no training process is needed to learn the model'?.

12For more information on linear regression and especially on the statistical aspects, the reader can
consult the course given by Stéphane Chrétien on Linear Models available here.
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Let us place ourselves in a slightly different regression context now and consider
the following example.

Exemple 7.6. We are trying to build a regression model capable of determining whether
or not an individual has an infection according to his lymphocyte count. The predicted
variable can take two values: 1 if the person has an infection and 0 otherwise.

At first sight, nothing prevents us from learning a linear model to try to fit our new
point cloud, as illustrated below.

Infection
A

Lymphocyte count

We will then simply have to take a threshold, on the values taken by our hypothesis
h, beyond which an individual will be considered as sick, e.g. we consider that an exam-
ple x belongs to the positive class when the hypothesis h returns a value greater than 0.5
(i.e. negative on the left part and positive on the right one). In this ezample it works well.

Let us now consider another one where the number of Lymphocytes can be extremely
high, meaning that the infection is serious. This new dataset is represented below
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Infection

y=1 o o o ° ° o
B(X) = 0.5 [
y=20 L ? .
T o—o >  Lymphocyte count

This time we see that if we use the same threshold, we are missing some positive
instances or infected people.

This example shows that the way we model our problem is not well chosen, we
need a different structure, i.e. a line which is more adapted to the structure of our data.
For instance, we need to have a model which be represented as follows:

Infection

>  Lymphocyte count

Such a model takes its values in [0,1] and we can thus say that it estimates the
probability of having an infection. To transform the values predicted by a linear regression
model into probabilities, we use the logistic function, 7.e. we compute:

1
L+ exp (—h(x))’

We talk about linear logistic regression.

Logistic Regression The Logistic Regression model, also called the logit model has
been introduced in the middle of the 20" century [Cox, 1958] but the use of logit models
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dates back to the end of the 19 century [Cramer, 2003].

These models are close to SVM in the way that they also aim to learn a lin-
ear separator between two classes. However, they differ since are used to estimate the
probability that an example belongs to a given class, for instance the positive class:
n = Pr(Y =1| X). More precisely, the logistic regression aims to compute the loga-
rithm of the odds, i.e. the ratio of the probabilities. Then we estimate the log of this
ratio using a linear model:

D(Pr<y=1|x>

Priy=0] x)> = hlw;b,x) = b+ (x, w).

Thus, once the parameters of the model are learned, we can compute the probability
of being in class 1:

B _exp(h(w,b,x)) 1
P = 0 = g (h(w.b,0) ~ T+ exp(—h(w.b.x))

Such function is called a logistic function and takes its values in [0, 1]. An example
x; is (usually) predicted in class 1 if Pr(y = 1| z) > 0.5, i.e. if h(w,b,x) > 0. Given a
task and an objective, we can choose to modify this threshold as we will see in the next
chapter.

To estimate the parameters of the model, we maximize the likelihood of the data
£(w, S), where S is a set of m examples.

m
Lw,b,8) = [[Pr(Y =ui | X =xi),
=1
m m
= [] Prv=wilX=x)x ] Pr(¥ =ui| X =x),
i=1,y;=1 i=1,1;=0

m 1 Yi 1 (1-y:)
[ <1 + exp(—h(w, D, xm) * <1 +exp<h<w,b,x@->>> '

2

Note that we usually prefer to minimize the negative log-likelihood of the data:

l(w,b,S)= —In(L£(w,b,9)),
1

1
- <1+exp<—<<w,xz-> +b>>> t-w)n <1 T Tt exp (—((wox) £ 0)

89 - Statistical Supervised Machine Learning

)



By doing so, we find the logistic loss function introduced before. In the following,
1

1+ exp (=({w,xi) + b))

for the sake of simplicity, we will set g(w,b,x) = . Therefore,

the optimization problem becomes:

min  — — Zyi In(g(w,b,%;)) + (1 — ;) In (1 — g(w,b,x;)) .

We divide the loss by a factor m in order to be consistent with the notion of em-
pirical risk previously defined.

If SVMs and Logistic Regression models are similar geometrically speaking (they
both learn a hyperplane) and present similar regularized empirical risk, a closer look in
the loss functions shows that the Logistic Regression is sensitive to outliers in the data
compared to SVMs and thus can lead to completely different solutions. Indeed, the loss
function associated to the Logistic Regression exponentially penalizes the errors.

Compared to the linear model for reel regression, there is no analytical solutions.
However, the problem is convex so can we can use a gradient based algorithm to find a
solution.

Learning procedure We can compute the gradient of the function ¢ with respect to
the vector w = (w, b) and we suppose that x = (1,x) in order to simplify the notation,
it avoids to manipulate the offset of the model b. Thus we have

VZ(W,S) = o . )

= =Y —ui(l = g(w,xi))x; + (1= yi)g(w, xi)x,
=1

- —Z_I (y"‘ 1+exp<1—<w,xi>>>x"‘

We can then apply the gradient descent algorithm using the above expression of
the gradient of negative log-likelihood (which is considered as our loss function in this
case):

wh ) = w) — oy vew®, 9),
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k=1,2,... and 7 is the learning rate

Most of the time, we use the Newton-Raphson gradient descent algorithm to
minimize our loss function, i.e. we use the hessian matrix of £ in our minimization
procedur instead of the learning rate 7.

This hessian matrix is given by:

[ 0% 0*¢ i
020 0%¢
—(w, 5 - — W, 5 m
V(w,S) = ﬁwgﬁwl( ) Ow1Owgi1 ) = Zg(w, x;) (1 — g(w,x;)) x;x7 .
: : i=1
0%¢ 0%¢
_ 9" (w9 ... 25 (w.s
_awd+1aw1 (W, ) 8w62l+1 (W’ ) ]

We can express the hessian matrix in more compact form:

Vi(w,X) = XTGX,

where X € R™*(4+1) i5 the design matrix (i.e. matrix of the data) and G € R"™*™
is the matrix defined by:

g(w,x1) (1 — g(w,x1)) 0 0
0 g(w,x2) (1 —g(w,x2)) 0 --- 0
G = . ) ) ) 5
0
0 e 00 g(woxp) (1= g(W, X))

Note that, with the above expression, the hessian matrix is expressed as a positive
linear combination of Gram matrices and is thus a PSD matrix. The Newton-Raphson
algorithm is then:

wk+1) — k) _ (Vzﬁ(w(k), 5)) ve(w®, 5),

which as faster rate of convergence than the standard gradient descent algorithm
with constant step.

Let us now say few words about regularization as we usually find it in both regres-
sion and SVM models'?.

131f you look at the SVM problem, the error rate of the algorithm is represented by the mean the value
of the slacks variables and the regularization term in Ls norm is the margin inverse of the model.

91 - Statistical Supervised Machine Learning



Regularization In order to avoid over-fitting, a regularization term of the form A ||w/|
is usually used in regression tasks. Thus, the optimization problem can be rewritten:

: 1 &
Jmin - > yiln (g(w,b,x:)) + (1 — i) In (1 — g(w, b, %)) + Al|wl|*.
’ =1

In the gaussian linear model, it can be written as

; —h(0,X)||2+ \||0]|*> = mi i — h(0,%;))* + 1| 6]
o, Iy = O X)IE+ X101 = min, 3 (s~ 0.x)" + A0

In the two preceding expressions, the standard used is not specified but the stan-
dards are very often encountered: the L; norm ||-|? and the Ly norm ||-|3.
The latter will have an important impact on the model and especially on the parameters
learned by the model:

e The L; norm is notably used to induce sparsity in the learned hypothesis, i.e.
when we want the learned hypothesis to depend on a minimum of parameters.
When we use this regularization term, we talk about Lasso Regression. This type
of regularization is particularly used in high dimensional models, when there are
many variables, as it can be the case in genetics. This regularization will allow to
highlight the most important variables for the prediction task. However, it has an
important drawback which is its non-differentiability at any point.

e The Lo norm is used to avoid that some parameters take too important points
compared to the other parameters of the model. In this case we speak of Ridge
Regression.

Before going on with another algorithm, we aim to extend the Binary Logistic
Regression for multi-class classifcation.

7.5 Multinomial Logistic Regression

The previous classification algorithm was presented in the context of binary classification,
but we can wonder how we can adapt this procedure for multi-class classifcation task,
i.e., define a Multinomial Logistic Regression [Engel, 1988] . To this aim, let us consider
that the set of label is now {1,2,...,¢q}, where ¢ > 2. For the sake of simplicity, we still
write w = (wg, w1, . . ., wq) our vector of parameters.
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In the binary case, we have built a linear model in order to estimate the log ratio
of the probability of belonging in class 1 to the probability of belonging in class 0 (also
called a logit). Now, we have to do something similar but with more than two classes,
we thus have to select one class as a reference class, let us say the class ¢, and we are
going to build all the following models :

0 Priy=11x)\ _ w®) x
! <Pr<y:q|x>> W),
L(Pry=21x)) @
1 (Pr<y:q|x>__>. R
Priy=q-2|x)\ _ @2
! ( Priy =) ) w0,
Priy=q¢-11x)\ _ @1
! ( Priy =) > = W

Regarding this set of equations, it remains possible to provide the value of Pr(y =
k| x),Vk =1,...,q. In fact, if we take the exponential and we sum all the equations
and use the fact that Pr(y =¢|x) =1— z;ll Pr(y =k | x), then we have:

1—Pry—q\x Zexp( >)

Pr(y=q|x)
and thus

1
1+ Zq 1 €Xp ((w(k),x>) '

Using this equality, we immediately have for all k& € [1,q — 1],

Pr(y=q|x) =

exp(< (k),x>)
1+ >0 1exp(( (l),x))'

Pr(y==k|x)=

Several remarks about this model

The defined probabilities sum to 1

e The number of parameters that we have to learn is equal to the number of param-
eters of a single binary logistic regression times number of classes minus one, i.e.,

(¢—1)x(d+1)

Note that the way model is built completely depends on the reference class, if we
change it, the parameters have no reasons to be the same.
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Using this approach the learning process consists in learning ¢ — 1 binary logistic
regression and then, at the prediction step, compute all the probabilities Pr(y = k |
x),Vk =1,...,q. A new example x’ is assigned to the class for which it has the highest
probability of belonging, i.e.,

g = arg max Pr(y =k | x).
ke[l,q]

the above procedure has the advantage to use to the tools that we have presented
in the binary setting. However it requires to learn ¢ — 1 models which depends on a class
of reference. To tackle the last issue, and do our model independent from the reference
class g, we can consider that each probabilities are given by:

exp(< (k),x>)
iy exp ((wh, x))

The above function is know as the Softmax function (it can be seen as general-
ization of the logistic function) and we can notice that the sum of probabilities is still
equal to one.

Priy==k|x) =

Vk=1,...,q.

However, it remains to deal with the Multinomial word in the name of the model
in order to completely define our model. As in the binary case, we have made the
assumption that the label is drawn according to a Bernoulli (or Binomial with n = 1)
Distribution. Because we are dealing with several label, we have seen that we can assign
a different probability for each exemple to belong in a given class. Thus the likelihood £
of our data will be based on the Multinomial distribution and defined by

q

W, 8) = [T]1Prly=Fk|x)tw=,

k=1i=1

_ Sl exp ((w (k)7x>) Liy;=ry
R kl:[H (Zl pexp ((w x>)> :

3

And the negative log-likelihood ¢ can be written as

SR (k)
exp (<W ,x))
‘(W Liy—ry In . (20)
; ; =ty (quzl exp ((wlh),x))
The estimation of the parameters works exactly the same as for the binary case, we

usually use the Newton-Raphson algorithm to estimate the parameters since there is no
analytical solution to the minimization of Equation 20. It is thus necessary to compute
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Figure 27: Representation of the data and the learned linear model used to fit the data.
This model is not appropriate and it seems that shall use a non linear one.

both the gradient and the hessian matrix of £ with respect to all the parameters.

In the next Section, we will focus on a non parametric version of the regression
algorithm and its extension called kernel regression.

7.6 Kernel Regression

The linear and logistic regression presented in the previous sections are both paramet-
rical models, i.e., we need to learn or estimate the parameters (depending on shape of
the model) in order to make predictions.

Non parametrical models also exist where we do not need any parameter. The
predictions for a new instance will only be based on the existed instances and, more
precisely, on the characteristics of its most similar ones.

Let us consider the problem of estimating the value of y according to the x values,
for the illustration we will consider x as being a real number. The data on which a linear
regression has been conducted are presented in Figure 27

The use of linear model to estimate the values of y does not seem appropriate, but
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Figure 28: Illustration of the estimation made by a non parametrical model
when Kj)(x,%;) = Ifjx—x,<ry With A = 8 (on the left) and Ky(x,x;) =

1 1
———exp | —=——=(||x — x; with A = 2 (on the right
= o (g i) fon the right)

how a non parametrical model will perform in this case?

Let us introduce a first simple model. To estimate, the y associated to x, i.e., y(x),
we simply consider the mean values y; = y(x;) of the neighbors of x. Thus, the estimator
h is given by:

_ ZZ:l KA(Xv Xi)yi
ZZzl K)\(X, Xi) ’

where, in this case K)(x,x;) = 1 if this distance ||x — x;|| between x and x; is
lower or equal to A and 0 otherwise.

h(x)

Figure 28

The next algorithms we will present can be used for both regression and classi-
fication tasks. It can return the probability of being of a given class, like the Logistic
Regression or directly assign the label as the SVM or the k-NN.

7.7 Decision Trees (classification and regression)

Decision trees were introduced by [Quinlan, 1986] but the currently used version of Clas-
sification and Regression Trees algorithm was well introduced by [Breiman et al., 1984].
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Age < 25
Toy dataset
Yes [ No
Age | Height | Sex | |
20 175 F
it loNa
40 175 M
28 172 M Height < 170
22 165 F
40 | 169 | F Yes | No
70 | 170 | F | |

CORCD

Figure 29: An example of classification tree.

Decision trees consist of a series of rules that are successively applied to the dataset
in order to separate the data into two or more groups. Here, we will only focus on binary
decision trees, i.e. when a decision rule separates the data set in exactly two different
sets.

The nature of the tree depends on the output space V:

e when )V C R, we talk about regression tree,

e when Y = {—1,1}, we talk about classification tree.

An example of classification tree is provided in Figure 29 with a toy dataset, in
which we aim to separate the two classes (male and female) using two descriptors (age
and height) using a set of rules. The initial dataset is composed of 4 females and 3
males. The first decision rule: Age< 25 divides the initial dataset into two groups, one
composed of two females and the other one of 3 males and 2 females. The group on the
left is pure and only contains females, so we do not focus anymore on this one. Now,
we apply a second decision rule: Height< 170 with which we are able to separate the
remaining males and females.

Such an algorithm is able to (non linearly) separate a complex dataset when using
a large number of decision rules. To see how the decision rules are chosen, we define a
criterion to optimize.
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For this purpose, we need two tools, a metric which evaluates the quality of a node
and a measure of improvement after a split, called the gain [Safavian and Landgrebe, 1991,
Rokach and Maimon, 2005].

The kind of used metrics depends on the type of tree we are dealing with. A list
of such metrics are provided by [Rokach and Maimon, 2005] among which:

e the Variance, used for regression trees:

where my denotes the number of examples in the node N and g the average value
of y; in the node.

e the Entropy which is mainly used in physics in order to quantify the mess in
a physical system, it is defined by Enty = — Zlepj logy(pj), where p; is the
proportion of examples of class j in the node N.

e the Gini impurity used in classification tree. It measures the impurity of a node
by computing the proportion of each classes present in the node. For instance, in
binary classification '*, the Gini impurity G of a node N is defined by:

Gy = Z pi(1—pj) = 2p1(1 —p1), (21)
J=1—1

where p; denotes the proportion of examples being in class j.

In the binary setting, the Gini impurity is a real value which belongs in [0,0.25].
A value of 0 means that the node is pure, i.e. it contains only examples from one class.
A value of 0.5 means that the node contains the same number of examples from both
classes.

Let us now illustrate this notion. In the previous example (Figure 29) the Gini

4 4 24 12
impurity of the root is Gioot = 2 X 7 1-— 7> = 19 while it is equal to 0 and %

respectively on each node after the first split. We have previously said that the node on
the left was pure because it contains only examples from one class. As this node is pure,
its Gini Impurity can not be improved.

The next step consists in choosing the optimal rule to split the dataset into two
nodes. This rule is chosen in order to minimize the Gini impurity at the end of the tree.
For this purpose, we define the Gini gain I' as follows:

14The definition can be extended to L classes and the Gini impurety is then defined by Gn =
Zle p;i(1 — pj;), where p; is the proportion of examples of class j in the node N.
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Figure 30: Illustration of the Gini Gain using the example presented in Figure 29. The
dotted green line represent the weighted sum of the Gini impurity of both nodes. The
arrow between the two dashed lines represents the Gini gain I'.

IN| |Ng|
I'=Groot — | ——————G ——G ,
<1NL+NR| Ne TN, & N e

where Gy, and G, denote the Gini impurity of the node on the left, respectively
on the right.

Figure 30 illustrates the use of the Gini impurity as a metric to build our decision
tree on the given example. The arrow between the two dashed lines represents the Gini
gain I'. On this figure, we also see that the Gini function is concave. This concavity
ensures the positiveness of the gain by the Jensen Inequality [Jensen, 1906] so that each
split leads to a lower classification error. Furthermore, at each step, we choose the fea-
ture and its corresponding value which maximizes the gain I". The decision rule is then
applied and the node is separated into two different nodes until getting pure leaves.

In practice, it is always possible to lead to such perfect leaves. However, building
such trees might tend to over-fitting and bad performance in generalization. To overcome
this issue, we usually use a pruning strategy which can be controlled by parameters:

e the size/depth of the tree,

e the size of a node: minimum number of examples required in the node to make a
new split,

e the size of a leaf: minimum number of examples in both leaves after a split,
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Threshold | |[Ni| | [Ng| | Vary, | Varn, | T

169 2 ) 81 297.6 10
170 3 4 392 52 48
172 4 3 342 67.56 | 21.33

Table 3: Values of the gain I, in terms of variance, according to three different thresholds.
An instance with a value lower or equal than the threshold will be put in left node,
otherwise, in the right one.

e a threshold on the gain: the minimum value of gain required to make a new split.

The gain that has been defined in the previous example can be used for any mea-
sure such as: Entropy, Gini, Variance or any measure that you want to define.

Before going on with another topic, Let us take another example, but using the
same dataset where aim to predict the age of the person according to its height using
our regression tree.

We first compute the variance at the root of our tree, in our case, it is equal to Vary =
245.71. We now have to find the best binary split such that the gain, defined by :

|NL| |NR]
7‘/ o 7‘/
|INL + Ng| Ny + |INL + Ng| @k )

achieves the highest value. For this purpose, we are going to test each possible
value of the variable height and compute the associated value of I'. The results of such
computations are provided in Table 3 and show that, among the three tested splits, the
best one is obtained using a threshold equal to 170.

I'=Varoot — <

Further in the document, we will see how we can use decision trees to build stronger
algorithms.

We finish the presentation of standards algorithms with Neural Networks.

7.8 Neural Networks

The model presented here is a model that can be used for both classification and regres-
sion but also in some unsupervised learning algorithms.
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Figure 31: Illustration of two activation functions. On the left, the heavyside function,
it takes the value 1 when x is positive and 0 otherwise. On the right, the function tanh,

r_ ,—x
defined by tanh(z) = em e_m, takes its values in the range [—1, 1].
et —e

Foundations This algorithm is very freely inspired by nature and more precisely by
neurosciences on synaptic models. The first traces of neural networks can be found in
works dating from the middle of the 20th century [McCulloch and Pitts, 1943]. This
is the first mathematical modeling of a neuron, which is currently known as a percep-
tron [Rosenblatt, 1958], a representation of which is given in Figure ?7.

This type of model takes a vector x € R? as an input and depends on one parameter
(w,b) € R The output h(x) is historically computed the as the sign of the inner
product of vectors x and w to which a constant value b is added, i.e.

d
h(x) = sign ({(w,x) + b) = sign ijxj +5b
j=1

Thus, this first model was initially intended to do binary classification. The model
that is used is affine (or linear if b is equal to 0) and an activation function is then applied
to the outpout to return the predicted class:

hx) = {0 if(w,x) +b < 0,

1 otherwise.

Note that the rule that is used to predict the class is the same as the one that we
have seen with the SVM classifier. The activation function that is used here is called the
heavyside function, illustrated in Figure 31 (left).

The first algorithm that has been used to learn the parameters w and b is known
as the Hebb algorithm and the process is quite simple but it only converges for linearly
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separable data. The parameters are updated as follows: let us denote Z the set of
missclassified instances. Then, for all (x;,y;) such that i € I compute:

w=w+ayx; and b=0b+ ay,

where « is the learning rate. The update rule is repeated as long as I is not empty
or it stops after a given number of iteration.

Another rule to learn the perceptron parameters, called law of Widrow-Hoff, works
in a similar manner, but it also takes into account the error observed at the current state:

w=w+ (i — h(x;))x; and b=0b+y; —h(x;).

This second update rule can be used with the sign function but we usually use it
with the tanh function which can be seen as smoother version of the heavyside function
with a little offset (see Figure 31 (right)), the sigmoid can also be used. The later has the
advantage to be smooth compared the heavyside function where the derivative is equal
to 0 almost everywhere and thus more suited for gradient descent algorithm.

Neural Networks The previously presented algorithms are interesting when we are
dealing with problems that are linearly separable. But this situation is rarely met in
practice and we need to develop more flexible and complex models to achieve perfor-
mance for non linear classification problems.

For instance, the perceptron algrorithm is able to achieve good performances on
the OR or AND dataset, i.e. a linear model is enough to classify the data, but it cannot
solve the XOR problem. The problems are illustrated in Figure 32 using a two dimen-
sional dataset and we effectively see that cannot separate the third dataset perfectly
using a simple linear classifier, we need a more complex model, i.e. to learn another
representation of data where the problem is linearly separable.

To do so, we are still inspired by neurosciences and the brain architecture where
several neurons are connected between them, this what we call a Neural Network. But
before going on with the architecture, let us go back to our example and see how can
solve the XOR. problem.

To solve this problem we can perform the following transformations and the x1 and
o axes:

e 1 < X1 N\xy

® Iy 11V X2
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Figure 32: Representation, in a two dimensional space, of the OR, AND and XOR
classification datasets respectively. A value x; equal to 0 means that entry is FALSE, it
is equal to 1 if it is TRUE. The color of the point is used to denote the label of the data
which is determined by the logical operator: TRUE and FALSE.

to have the following new representation:

L2 x2

xr1 x1

With this transformation, the two initial red points are projected at the same
place in the new space because only one of their two entries was in the TRUE state. The
representation of the blue points is the same since their two entries are the same. In this
new representation, the problem is linearly separable and such a representation can be
learned by a neural network, more precisely, using a multi layer perceptron.

To find the architecture, we first to do some logical reasoning and write the XOR
function differently. This function is true if and only if exactly one of the input is true.
In other words

XOR(z1,22) = (1 Va2) A (x1 Nx2) .

It is now enough to translate this expression using several perceptron. For the
XOR problem, we just how to combine the several perceptron given below. We leave
it to the reader to represent the solution of the problem by combining these different
perceptrons.
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Input Hidden Hidden Output
layer layer 1 layer 2 layer

Lo
I

T2 —

T3 T

Figure 33: Representation of a multi layer perceptron. On this particular example, the
input space is of dimension 3, there are two hidden layers of size 3 and 2 respectively.
The output space is of dimension 1.

The AND perceptron:

The OR perceptron:

The NOT perceptron:

The activation function that is used is always the heavyside function.

A multiple layer perceptron is represented in Figure 33. The first layer is called

input layer. Its size is equal to the dimension of the input space and we also add an other
neuron for which the entry s always equal to 1 and which represents the bias term b.
The intermediate layers are called hidden layers. The number of layers and their sizes
are defined by the user according to his needs and the problem he is facing. Again, to
each hidden layer, we can associate a bias parameter that will be used to evaluate the
output at the next layer.
The last layer is called the output layer, and its size also depends on the size of the output
space. For a binary regression or classification problem, the output is of dimension 1.
On the other hand, for a multi-class classification problem, the output layer will have as
many neurons as there are classes in the data set.

The neural network presented in Figure 33 is said to be fully connected, i.e. all
the inputs are connected to all of the outputs. However, it is possible to remove some of
the connections, by cutting or setting the respective weights equal to 0. We could also
imagine connections between two non successive layers.

We will finish this generalization on networks by evoking the number of parameters
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of a multi-layer neural network.

In the example given in Figure 33, we can see the number that the input is of
dimension 3, the two hidden layers are respectively of dimension 3 and 2 and the output
layer is of dimension 1. Further, at each hidden layers and at the input layer is associated
a bias term.

So, in our example, the number of links, which is equal to the number of parame-
ter to learn, is the dimension of input layer plus one multiplied by the dimension of the
hidden layer, thus 12 parameters. We also have 8 parameters between the second and
the third layer and 3 parameters between the third and the fourth layer. Thus a total of
23 parameters for this network.

More generally, the number of parameters to learn in neural network with K hidden
layers

K-1

> (%) x (¥ +1),

k=1

where the d*) denotes the dimension/number of units the k-th layer. In the ex-
ample below, the neural network has 48 parameters.

Input Hidden Hidden Output
layer layer 1 layer 2 layer

This last example shows a multi-layer perceptron than be used for multi-class
classification. But we will give more precision about how it works when will present
different losses we can use in neural networks and after providing information about how
to learn the parameters in the next paragraph.

Training and losses (Back-Propagation algorithm) We will consider, for the sake
of simplicity, the following network with only two hidden layers with a single unit, with
a one dimensional input!®.

15This example has been extracted from the Thesis of Damien Fourure.

105 - Statistical Supervised Machine Learning


https://tel.archives-ouvertes.fr/tel-02111472/document

Wy v Wy = “’rS v
] 0wy ow, | ows
x N "—
O SN0 S
ay, 0y,

Where w;, f; denote respectively the parameters and the activation function of the
i-th layer and y; the output. The parameters of the network are updated standard gra-
dient descent algorithm using a Forward - Backward procedure.

The Forward consists in giving data to the network one by one (stochastic) or using
mini-batch (subset of the data) in order to compute the loss value. The second step is
the Backward one, where the parameters update using the data and the loss value. The
main difficulty will be to trace the error along the entire network in order to update all
the parameters. Indeed, if the weights of the last layer are directly linked to the output
value, the same cannot be said for the weights of the first hidden layer or the input layer.
The gradient of the parameters of the first layers will directly depend on the gradient
of the parameters of the layers further downstream. It implies to use the chain rule, to
compute the update:

If f and g are two differentiable functions respectively at x and g(x), the derivative
of f og is given by

Of o Of o 0
129 (5) = 20 ) x )

Let us now use this rule to update the different parameters of our network. We
only compute the derivatives of y3 w.r.t. wi,ws and ws. However, keep in mind that
loss is used and this loss depends on y3, but we skip this for the sake of simplicity.

e Derivative with respect to ws:

Oys _ Of3(y2, ws)
8w3 811)3

e Derivative with respect to ws:

Oys _ Of3(y2, ws)
811}2 (911)2 ’
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_ 0f3(y2,ws3) " 0y2

3y2 8w2 ’
_ Ofslyz,ws)  Ofa(yr,ws)
8Z/2 811}2 '

e Derivative with respect to wi:

Oys _ 0f3(y2, ws)

awl 811)1

_ 0 f3(y2, w3) " 0yo
8y2 (3’11)17

~ 0fs(y2, ws) " 0 f2(y1, w2)
8y2 811)2

_ Ofs(y2,w3)  Ofa(yr,wa) Oy
y2 Iy ow;’

_ Of3(y2, w3) " 0 f2(y1, wa) " Of1(x, wr)
Y2 oy ow;

With this example, we that, in order to update the networks’ weights we need (i)
a forward step where the values of the hidden layers are computed and a backward at
which the weights are updated. The procedure in which we update the weights using the
chain rule is called the back-propagation.

Let us illustrate it an other example where we have more than to neurons at given
hidden layer and consider the following network:

Input Hidden Hidden Output
layer layer 1 layer 2 layer

We will denote by y](-k) the j-th neuron of the k-th layer and y the final output.
For the sake of simplicity, we also assume that we do not have any activation function

on the last layer as it can be the case in a regression setting. Finally, we denote by

Some architectures
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8 Advanced Supervised Algorithms

8.1 Back to Statistical Learning Theory

In Section 5, we focused on the error in generalization and talked about over-fitting or
under-fitting for algorithms by focusing on the error. We have seen that in practice we
will look for the best parameters that minimize the errors of our algorithm, but we never
cared about this particular error. More precisely, what is the potentially minimal value
reached by our algorithm? Does this mean that the algorithm is perfect? Is it really the
best model I could have learned, or the right class of model?

8.1.1 Error Decomposition

In this part, we will see that we can decompose our error in order to bring some answers
to these questions. This question of decomposition of the error will also be the origin
of the development of more complex models (such as the combination of models) which
will allow us to reduce some of its components.

The previous examples of the regression setting have shown that a simple model,
such as a linear one, is not enough to achieve good performances, i.e. it presents a large
bias. On the opposite, a complex model, a high degree polynomial one, will have a low
bias but will not be able to generalize well, it has a high variance.

Let us show where these two terms comes from by considering that our data are
generated by the following model:

y=f(x)+e,

where the expectation of € is equal to 0 and represents some errors. Using a sample
S = {(xi,yi) }i-, generated by the previous, we learn a hypothesis h which is an estima-
tor of f. Because h is learned from a sample S, it is considered as random quantity. We
are now interested in the generalization capacities of h over all the distribution of our
data according to the mean squared error: E[(y — h(x))?]. More precisely we will study
the different component of the error.
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Proposition 8.1: Error Decomposition

We consider the following data generation model

y=f(x)+e,

Using a sample S = {(x;,v;)}.-, generated by the previous, we learn a hypothesis
h which is an estimator of f. The generalization error of h according to mean
squared error can be written:

El(y — h(x))*] = (E[h(x)] - f(x))* + E |(E[h(x)] - h(X))Q} +E[(y - f(x))?].

Proof. We will use the Kdonig-Huygens formula which states that for any random variable
X, we have:

E[(x - IE[X])Q] — E[X?] - E[X]%.
We will now develop the left hand-side of our equation.
El(y — h(x))?] = Ely® — 2h(x) + h(x)?],

= E[y?] — E[2yh(x)] + E[h(x)?],
—— SN——

= Ely + B |(y — E[y])’| - 2BR]ERG)] + E[R(x)]* + E |(h(x) - E[h(x)])’],
= FX)?+E (5~ ()] = 2£(x) E[h(x)] + E[h(x)]2 + E | (h(x) — E[h(x)))*],

= (E[h(x)] - f(x))* +E [(E[h(X)] — h(x))*| +El(y — f(x))°].

In this proposition, the terms on the right hand side respectively represent:

e the squared bias of h: the difference between its mean over the sample S and the
value f.
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e the second term is the variance of h: how much h varies around its average when
the sample S changes. This represents the sensitivity of the model to the data

e the third term represents the Bayes error. It does not depend on the estimator but
only on the data distribution.

Exemple 8.1. Let us consider the two distributions represented the below. Then the
Bayes error of a model is the area under both curves, i.e. the space where any classifier
is not able to distinguish if the data comes from a distribution or another.

0.3 5

For instance, you can try to compute the Bayes error of the following two densities
for a two classes:

3 3 7
dy = §m2+a: when 0 <z <1, and dy = 1 whenzgxgi,
0 otherwise. 0 otherwise.

Regarding the previous proposition, the quantity we thus aim to minimize is the
excess of risk, that is:

El(y — h(x))?] — El(y — f(x))’].

If the study has been conducted of the special case of the regression setting, a
similar one can done for the general case.

We now suppose more generally that the observations are sampled from a joint
distribution D = X x ) associated to a measure u. We also consider a loss function ¢
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(Y xY >R,

which quantifies the cost of the error, of a hypothesis h, by predicting h(x) when
the true value is y. The function or hypothesis h we are looking for is the one that
minimizes the expected error over D, i.e.

R = B W60 = [ )

Keep in mind that, in practice, the hypothesis A is learned on a finite sample. We
now assume that we minimize the risk over a function/hypothesis space H. If we denote
by R* the Bayes risk, we can decompose the Bayes regret as:

R(h) - R* = (R(h) - inf R<g>) + inf R(g) - R"

The first term is the excess of risk of h with respect to the best function in the
hypothesis space H. The second term is the approximation error, i.e. the smallest
excess of risk we can achieve using a function in H. This is bias term which does not
depend on the data but only the hypothesis space H.

We will now draw the link with the generalization bounds presented in Section 5
and to go a little bit further by bounding the excess of risk.

If we denote by h the hypothesis obtained by minimizing the empirical risk over H
using a sample S:

h € arg min Rg(g).
geEH

We will also denote by hg the minimizer of the risk R over the hypotheses space
H, i.e.
hy = arg minR(g).
geEH

The excess of risk: R(h) — in7f_l R(g) can be rewritten as the sum of three terms:
g€

R(h) — R(hy) = (R(h) — Rs(h)) + (Rs(h) — Rs(hn)) + (Rs(hy) — R(hw)),

where (R(h) — Rg(h)) is the difference between the true risk and the empirical
risk of the hypothesis h. This quantity is the one we are interested in, when it comes
to study the generalization of the algorithms. (Rs(h) — Rs(hy)) is a non positive term
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by construction. (Rg(hy) — R(hy)) is easier to control as it involves a deterministic
function and the law of large numbers applies.

However, the first term can be bounded as follows:

m

> Uglxi), i) -

i=1

Rs(h) — Rs(hy) < sup
geEH

3
N
2
S
=

Since this quantity also bounds the third term, we immediately have:

R0~ Rs(h) < 2o | B [Hlo))] = o 3 Aot -

This latest bound can be seen as variance term which increases with the size of .
If the size of H is big we can achieve a a low empirical risk, however, the expected risk
has higher chance of being high.

A question can arise now:

How can we define the size of hypotheses space H?

When H contains a finite number of hypothesis, the answer is clear and the size
is simply the number of hypothesis in the set. But when it is infinite, it exists several
measures to evaluate H size as the Rademacher complexity.

The Rademacher complexity [Bartlett and Mendelson, 2003] has been introduced
to measure the complexity of a set of hypotheses [Koltchinskii and Panchenko, 2000].
Informally, it measures how the set of hypotheses is able to fit noise in the dataset.
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Definition 8.1: (Empirical) Rademacher complexity

Let H be a family of functions and S = {x;}*; a fixed sample of size m. Then,
the empirical Rademacher complexity of H with respect to S is defined as:

Rs(H) = L [sup —Zaz X;

b
heH ™M ]

where o = (01,...,0p,) is a vector of Rademacher random variables, i.e. random
variables taking values in {—1,+1} both with probability 1/2.

The Rademacher complexity is the expectation of the above quantity on the dis-
tribution D of the data:

Rn(H) = B [Rs(H).

J

This measure increases with the size of H and decreases with the sample size. Thus
using this measure we have

B [y(x),9)] -

1
E |R(h)—Rg(h)] <2 E su —
[R(h) ~ Rs(h)] < [ D o m

< 2R, (H).

Therefore,

GE, [R() =R < inf R(g) ~ R* + 4%, (M),

This result illustrates a little more generally the bias variance trade-off for risk
minimization. It makes explicit the link between complexity and sample size.

It remains to explain where the following inequalities comes from

1 m
S~H%m SEE (x7£~D (9(x),y)] — m ;ﬁ(g(xi),yi) ] < 2R, (H).

We are going to show this inequality using the symmetrization technique. Con-
cretely,

1 m
I A [ag(x),y)}—ﬁgag( )yi)],
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= E |sup E ;Zﬁ(g(xé),yé)]—;Zﬁ(g(xz‘)ayi) )

S~D™ | gepy |S/~D™

1 1 —
- E E =S o)) — — S Uglx),
Som Z‘Elg sbm | m 2 (9(x3), i) m 2 (g(xz),yl)] :

= E |sup | E ;Zﬂ(g(%)?yé)—f(g(xi),yi)]“,

S~D™ | gepy |S'~D™
|

where the last inequality uses the fact the supremum of mean values is lower than
the mean values of suprema. We now introduce our Rademacher variables o;, i =
1,...,m and notice that
] SNDm

This is due to the fact that the data are 7.7.d.. Furthermore, this inequality holds
for any choice of o.

sup

> S,S/IED"L [gé?—[ i Zf(g(x;), y;) - E(g(xi)v yl)

m -
=1

m

LS~ tg(x), ) — Llg(x) )

m
i=1

E

su
S~Dm b

geEH

sup
geEH

mzaz z) E(g(xl)ayl))u :

Finally,
1 m
SNIE%jm 22}3 EZUZ’ (C(g(x7), yi) — L(g(x:), i) ] ;
1 & 1
< E (g E - 2(a(x). ),
- S~Dm Sg/fl ngz +S/~Dm Zg’}l-)[ m;m (g(xz),yz)]a
1 m
SN'Dm SIEJ‘?I_)[ mZO'z Yi ],
— 29%,,(H)

It exists other measures to express the capacity of the space of hypothesis H such
as the VC-dimension |[Vapnik and Chervonenkis, 1971] which are more easy to compute
when we are dealing with linear classifiers. But we are not going to deal with such a
measure, we rather come back to generalization bounds and provide a first bound using
this complexity measure.
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8.1.2 Back to generalization bounds

Using the Definition 8.1 we can provide a first generalization bound using this complexity
measure.

Theorem 8.1: Rademacher Generelization Bound

Let H our class of hypothesis associated to any loss function £ mapping from X' x Y
to [0,1]. Then for any 6 > 0, with probability at least 1 — § over the draw of an
1.1.d. sample S of size m, each of the following holds for all h € H:

R(h) < Rs(h) + 2R (H) + \/bg;m, sl
R(t) < Rs(h) + 295(30) + 31/ B0,

Proof. Let us consider a sample S = {(x;, y;) };~, random drawn from D. For any h € H,
we denote by Rg(h) = ( %ES [((h(x),y)] the empircal risk associated to a loss ¢ and
y)~Sm

)

hypothesis h.
The prooof consist in applying McDiarmid’s inequality to the function @ defined on any
sample S by

&(S) =R(h) —Rs(h).
heH
If we now consider S and S’ two samples differing by exactly one point: z,, =
(Xm,Ym) € S and z, = (x],,y.,) € S’. Then, since the difference of suprema does not
exceed the supremum of the difference, we have

B(5) — B(S') < sup Rs(h) — Rer(h) = sup “Zm) = HhGm)) L
heH heH m m

1
Similarly, we can obtain ¢(S") — @(S) < — and we can bound the absolute value

of the difference |®(S") — ®(S)|. Then, by McDiarmid’s inequality, for any § > 0, with
probability at least 1 — §/2, the following holds:

log(2/9)
PS5 < E &S —_— .
(5)< B P8+ —
Our next step consists in bounding the expectation of the right-hand side the
previous inequality
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spm (PO = B [ggg (R(h) - Rs(h))] ,

_ {sup< E [RS,(m—Rs(hﬂﬂ,

S~D™ | pen \S'~Dm
E (h) — h
< s oo 1, (Rt = Rs(0).
1
= E — U(z;) — Uz,
1

- E - (U(z;) — U2 :

S,S'~D™ o [2161’2 (m ;U ( (Z ) (ZZ))>]
< E sup lin:(f-ﬁ(zl-)
= S/NDm,G heH m — K3 (3

1 m
=2 E sup | — oil(z, ,

= 90%,,(H).

+ E
S~D™ o

1 m
i ()|

The reader has noticed that this step of the proof is exactly the same as the one
provided when sutyding the excess of risk. Using again McDiarmid’s inequality, we get

R (H) < Rs(H) + ) 250,

2m

Thus, with probability at least 1 — § we have:

B(S) < 2Rg(H) + 3 log;i/(”

8.2 Ensemble Methods

In what we have previously seen, we only use one model to answer to a given problem,
i.e. a linear regression to predict the price of an house given its different characteristic
or a logistic regression to predict if someone is infected or not.

But why use only one model? Would not it be more interesting to use several
models to create a more powerful one?

117 - Statistical Supervised Machine Learning



The answer is effectively yes, it is more interesting to do so and currently, the
combination of models are the one that perform the most on lots of tasks.

But how to create such a combination of models?

A naive rule Let us imagine we want to create K models using a sample S =
{(xi,yi)}iv, of size m. We can train an hypothesis hy for k from 1 to K using the
same training sample S for each k.

After that, we can combine the different hypotheses into a single one, noted H,
doing the average to take our final decision:

e for a regression task, the predicted value will correspond to the mean value over all
prediction made by hypotheses hg, i.e.

1 K
Hi(x) = 2 > h(x).
k=1

e for a classification task, we can apply the same rule. However, instead of taking
the mean value as the output of the combined classifier, we rather take the sign of
this mean value as the output, i.e..

1 K
Hg(x) = sign (K Z hk(x)> .
k=1

In the case where the hypotheses hy return a value that is —1 or 1, our hypothesis
Hp can then be seen as an majority vote with equal weights.

On the contrary, if the hypotheses hj return real values, then we can imagine that
it is a weighted majority vote.

Although this rule is simple in practice, it is not very useful.

Indeed, recall that if all our problems are convex, there is a good chance that all
the hypotheses hj are similar if we use the same training set each time.

Based on hyper-parameter One could then be tempted to vary the hypotheses by
imposing different hyper-parameter values for each hypothesis, e.g. one could impose K
different hyper-parameter values in order to obtain K different models.

Again this solution is not satisfactory. On the contrary, it may lead to hypotheses
with low predictive power. Moreover, using such a process would call into question the
cross-validation process presented earlier which allows to optimize the values of these
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hyper-parameters.

We can see that, even if our algorithm does not depend on hyper-parameter, it is
possible to improve it using a single training set S. These two methods are known as
Bagging and Boosting.

These two methods act differently on the performance of algorithms or more pre-
cisely on the different components of the error of an algorithm. We will also present a
third one, more general which also consists in combining several algorithms. But before
presenting these approaches, let us motivate the use of several models.

A theoretical analysis We will now try to explain why it is interesting to combine
several model To do this, let us consider data (x,y) from a distribution D where x s the
feature vector and y is the response variable or the value to predict.

In a regression setting, we will then learn a hypothesis h which aims to predict the
value y according to x. For the sake of simplicity, we suppose there exists a true function
r such that r(x) = y for all (x,y) ~ D = X x Y. We also consider a training set S of
size m. Remember that we aim to learn a set of hypothesis hy, t = 1,...,T. Thus for
any instance x and any hypothesis h;

hi(x) = r(x) + ei(x),
where €4(x) is the error between the predicted value and the true value of the
function at x.

Keep it mind that, in a regression setting, the error we consider is the MSE, i.e.
the mean squared error. Thus the generalization error of a single hypothesis h is defined
by:

x~X

1
And the generalization error of our averaged classifier Hx = T Zthl h is

E_[(Hr(x) -0 = E

o 2
(Tzhxx)—r(x)) ,
t=1

1 2
- X/I?X <T ZEt(X))

t=1
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Let us suppose now that our error e; are centered (mean value equal to 0) and
uncorrelated. We can rewrite the previous expression as:

1< ?
(7 e00) |

JaRE: LT
= XLEX _(T Z €ty (X)> (T Z Etz(x))] ,

t1=1 to=1

E_|(Hrx) - (07 = E

T
1
72 ZXLEX [gt(x)z] ’
t=1

1(1&
=7 (T 2 kdx)ﬂ) :

This last equation shows that the generalization error of a combination of hypoth-
esis is just the average error of the set of the T hypotheses divided by T

Note that, in practice, the assumption of uncorrelated error is essentially wrong
because several hypotheses h; are learned using similar samples S;. However, we can still
show that the error of bagging hypotheses is no more than average error of the set of
hypotheses h;.

In fact, for any random random variable X, we have E[X?] > E[X]? (this a conse-
quence of Jensen’ Inequality) Thus, taking X = &, we immediately have:

1 1 <& ?
LOIENEEEEIES DENC)
=1

t=1

Let us know go on with a first ensemble approach: the bagging procedure.

8.2.1 Bagging and Random Forests

Bagging It is a way to combine models that have good performances on the training
set. We have previously seen that we can decompose our Bayes Regret into the sum of
two terms

R(h) — R* < inf R(g) — R* + R(H).

geEH
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Figure 34: Ilustration of the variance reduction phenomenon for the combination of
models. On the left, we represent the 10 models learned on different data sets from the
same distribution and on the right the model obtained after the combination of the 10
previous models (in red) as well as the regression function (in blue)

What will interest us here is more precisely the variance term in the error decom-
position. This value will show us how sensitive the algorithm is to the variation of the
training set, if this value is low, our algorithm will be little sensitive to variations of the
training set.

Let us show this on a little example illustrated on Figure 34 for a regression task
(note this is similar for classification tasks).

We will learn a polynomial regression model of degree 15 on different data from
the same distribution. Each model is learned on a training set of size 30. In total, we
learn 10 different models which are represented on the graph on the left. We note that
the variance of the models is very important, i.e. for the same value on the abscissa, the
models return very different values on the ordinate, so it is very sensitive to the training
data.

On the other hand, if we average the results of all the 10 models, we obtain the
graph on the right. We notice that the latter show much less variation around the
true distribution of the data. We have therefore succeeded in reducing the variance by
combining several models.

Through bagging, we wish to exploit the fact that the variance of a set of models
is smaller than the variance of the models separately. Moreover, the combined model
retains a very important predictive power, i.e. it remains accurate.

In this example the models learned are on different data each time. But in practice
we have only one training set S. So we have to find a way to create several training sets
Sy from this set S. This can be done using the Bootstrap method, which is a sampling
method based on a random draw. How does it work in practice?
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Algorithm 3: Bagging

Inputs : Training set S = {(x;, i)}, number of model T’
Output: Hypothesis Hy
:fort=1toT do
create a bootstrap sample S; of size m using S.
learn a hypothesis h; using Sy
end for

1
set Hp = T Z?:l hy
=0

Let us consider of training set S of size m. To create a bootstrap sample Sy of
the same size m it will be necessary simply to carry out a draw with replacement of m
examples in the set .S, i.e. we have the same probability to draw each example in the set .S.

With this procedure, the same example may occur several times in the same train-
ing set. Thus the algorithm, in order to minimize its error, will have to pay more attention
to this example and will give it more importance. This sampling method will thus create
diversity in the learned models. Indeed, the sets S; being different, the hypotheses hy
will focus on different regions of the data space.

The Bagging procedure is summarized in Algorithm 3. As one can then guess
after this reading, bagging means bootstrap aggregating: generate several samples and
hypothesis and then you aggregate the results.

Let us now present a well known algorithm based on the bagging procedure: Ran-
dom Forests algorithm.

Theoretical Analysis of Bagging We can conduct a similar analysis as the one pre-
1
sented in the previous section. Let us also denote Hy = T Zthl h: our bagging classifier

used to estimate (for instance) the output of a regression function y, i.e., Hp(x) ~ y.
Then, the average error made by the set of classifiers is equal to:

E
x~X y~Y

1 & 1 <&
y2 - QQT Z ht(X) + T Z ht(X)2] .
=1

T
1
=Y (m(x)-y)?|l = E
TZ( t(X) y) ] xNX,yNy —1

t=1

1 S
Using again Jensen’ Inequality, we have (T ?:1 ht(x)> < T ?:1 hi(x)?, so

that
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1< 1 < 1 <& :
E Tz(ht(x) _y)2] > XNXI?yNy y? — QyT;ht(x) + <Tth(x)> ,

xNvaNy

t=1

1 & ?
- E ~=-N"n ,
| (- 7 m)

= B |- a0,

This last inequality show that the error made, on average, by the bagging classifier
is always lower than the error made by a single classifier.

We can go a little bit further by studying the potential gain of the bagging classifier.
We can see that this gain depends on the difference of the two following elements:

1 & C
2
(F35m00) <52 mwr
t=1 t=1
which can be seen as the variance term associated to our set of classifiers h;. If the

1 1 2
variance is important, meaning that the difference T Z;‘FZI he(x)? — (T Zle ht(x)>

is big, then the gain will be important. It shows that, it is more interesting to use a
set of base classifiers that have a high variance but a low bias in order to achieve a
good a bagging classifier, which is exactly the case of Decision Trees. This is why it
is interesting to combine them using this procedure to lead us to the Random Forest
algorithm.'%

Random Forests When we introduced decision trees, we said that the size of the tree,
i.e. its depth, depends on the data. The tree will thus grow until we obtain pure leaves.

If we go back to our error decomposition story, the (deep) decision trees thus form
hypotheses with a low bias (an error rate that decreases with depth) but with a high
variance. They are very sensitive to the data and the structure can vary greatly from
one training set to another.

In fact, we find ourselves in exactly the same case as our regression example pre-
sented in Figure 34. We will therefore proceed to a combination of tree models in order
to reduce the variance of the trees while maintaining their predictive capacities using
bagging. This combination of trees by bagging gives rise to the random forest algorithm
founded in the early 21*" century [Breiman, 2001].

16Note that a similar study can be conducted in the case of classification, but this is not shown here.
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Algorithm 4: Random Forests
Inputs : Training set S = {(x;,vi)}.~,, number of trees T', a sample size m/
and a number of features p’
Output: Hypothesis Hg
1: fort=1to T do
2:  create a bootstrap sample S; of size m’ < m using S.
3:  Build a decision tree h; where at each split, a random subsample of p’ features
are used to split the node.
4: end for

1
5: set Hp = T Z?:l h; =0

The idea is then to build several trees based on different training sets S; that are
drawn randomly from S with replacement, i.e. using the bootstrap procedure and to
combine the results of the different trees. But the random forest algorithm (presented
in Algorithm 4 is in fact more sophisticated than that. It is based on the principle of
double sampling: sampling both on the examples and on the variables.

This double sampling will make it possible to create a diversity at the sample level
and features level. Compared to the standard bagging algorithm, note the boostrap
sample is of size m’ < m and that the number of used features at each node of a given
tree is less than the dimension d of the data. Note that it is not mandatory to have
m/ < m, it only give the possibility to have a faster learning procedure.

From an algorithmic point of view, it allows to learn the different trees faster: you
have less examples and the splitting procedure is applied to a less number of features.

The presented algorithms is the simplest one. It is not rare to give different weights
to the trees according to their performance, remember, this our weighted majority vote.

Decision Trees and Random Forests are used in many applications such as finance,
security or social sciences in general. These algorithms have the advantage to be easy
to build and their decision is easy to understand (explainable AI), you just to follow the
road of the data in the tree.

Out of Bag (OOB) Error for validation The bootstrap procedure means that we
don’t use all the data to learn a hypothesis. More precisely, given a sample S of size m
and if we consider that we draw any example x € S with the same probability 1/m, then
the probability of not selecting an example in m draws is equal to (1 —1/m)™. If the
sample size m is high enough, this figure tends towards e~ ~ 0.37.
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It means that the bagging procedure do not use approximately 37% of the data
when a learning a base classifier, thus approximately 63% of the data are used. We can
wonder how this remaining data can bu used for the bagging procedure. This remaining
examples are called Out Of Bag data, they are not used to train the classifier but rather
to tune the hyper-parameters of the model by estimating their generalization capacities.

The Bagging is then a procedure which is a mainly interesting to

e achieve an ensemble classifier with less variance,

e train a stronger model with higher generalization capacities with fewer ressources
(from a an experimental point of view).

As for simple decision trees, random forests can be used for both regression and
classification as the main difference lies in the way the different trees are built, i.e., the
used loss function.

Measuring the importance of variables AS it was the case for decision trees as
presented in Section 7.7, we can also measure the importance of each feature X7 in the
set of classifiers. The way to measure the feature importance as been introduced at the
same time as the Random forest algorithm [Breiman, 2001].

Remember that, to assess the quality of a split in decision trees according to a
feature 27, we measure the difference of entropy at a node N AEnty after and before
the split due to the variable X7 (we explain it for binary decision tree for the sake of
simplicity) :

AEnty(X7) = Ent(py) — Ent(py, X7),

. N;
where Ent(pn) = — Y51 P,k logs(pv k) and Ent(pyy, X7) = ‘|N|’ S 1 PNk 10go (D, ) —
N
‘|J\f|‘ Zk 1 PNk logo(pn, k). In the previous expression, we use Nz and Ny to denote

the two leaves (left and right) obtained after the split of the node NV

To measure the importance Imp’ of the variable X7, we measure the mean value
of AEntn(X7) over the nodes N where X7 is used to split the node

T Nt
Z Z AETLtN X])]I{X is used for split}>
t=1 N=1
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where NV; denotes the total number of nodes for ¢-th tree and T" denotes the total
of trees.

We will see in the next section that there is another way to combine trees (or other
classifier /regressors) using the so called Boosting procedure for weak hypotheses.

8.2.2 Boosting

This section is largely inspired by Chapter 7 of the book Foundations of Machine Learn-
ing [Mohri et al., 2012].

Setting Let us introduce to definitions first of strong and weak learnability that are
given in the context of classification, where the boosting is mainly used. Thus, we can
use indifferently the terms classifier and hypothesis.

Definition 8.2: Strong Learnability | ]

A concept class C is said to be (strongly) PAC learnable if there exists an algorithm
A and polynomial function poly such that for any € > 0 and § > 0, for all
distributions X and for any target concept ¢ € C, the following holds for any
sample size m > poly(1/e,1/6,d, size(c)) :

<egl>1-
B [R(hs) <2 1-3

where hg is the hypothesis returned by A when trained on S. If A further runs
in poly(1/e,1/4,d, size(c)), then C is said to be efficiently PAC-learnable.

In this definition, a concept c is a function from X to ) that reach a specific target.
As an example, a concept may be the set of points inside a triangle.
A concept class is a set of concepts we may wish to learn and is denoted by C. This
could, for example, be the set of all triangles in the plane.

According to the previous definition, a concept class C is thus PAC-learnable if the
hypothesis returned by the algorithm after observing a number of points polynomial in
1/e and 1/§ is approximately correct (error at most ) with high probability (at least
1-9).
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Definition 8.3: Weak Learnability [ ]

A concept class C is said to be weakly PAC learnable if there exists an algorithm
A,y > 0 and polynomial function poly such that for any § > 0, for all distributions
X and for any target concept ¢ € C, the following holds for any sample size
m > poly(1/d,d, size(c)) :

1
P R(hg) < = —~v| >1-19,
S~Dm [ ( S)_2 7]_

where hg is the hypothesis returned by A when trained on S. when such an
algorithm exists, it is called a weak learning algorithm, a weak learner or a base
classifier.

The idea is quite similar as for strong hypotheses or strong learners. Note that the
difference between the two definitions is based on the error of the hypothesis hg. In the
first one, we require this classifier to achieve an error of at most € for a sufficiently large
sample m(e). In the second one we just want the same classifier to be slightly better (of
a parameter v > 0) than the random classifier.

Strong classifiers have been met before when have presented decision trees or over-
parameterized neural networks. Weak classifiers are also naturally present in the litera-
ture depending on the task, e.g. small decision trees with a depth of one or two or linear
classifiers as linear SVM when the problem is non linearly separable.

If bagging has worked with strong classifiers, boosting will work with weak ones.
It will try to combine them in order to build a strong classifier, but the way it works
is different from the bagging procedure. Instead of building bootstrap samples, we will
modify the data distribution in order to build a sequence of classifier (h;)cy where hyyq
will try to correct the errors made by the previous classifiers hy;.

Adaboost A well-known boosting algorithm of boosting is Adaboost [Freund and Schapire, 1999
which iteratively focuses on examples difficult to classify. The algorithm is presented in
Algorithm 5 and an illustration is provided on Figure 35

Let us say few words about this algorithm before analyzing it.

At a round ¢, the i-th training samples has the weight wgt). For ¢t = 1, all the
training samples have the same weights equal to 1/m. A hypothesis h; is learned and we

can compute its classification error ey
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Figure 35: Illustration of the first nine iterations of Adaboost algorithm on a binary
classification task. The colors represent the decision boundaries and the size of the
points represents their weights in the sample distribution. The figure below represent
the decision boundaries of the Adaboost algorithm after 10 rounds.
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Algorithm 5: Adaboost

Inputs : Training set S = {(x;, i)}, number of model T’
Output: Hypothesis Hp
1: for i =1 tom do
the weight of the i-th example wgl)
end for
:fort=1toT do
learn a base classifier hy using S with the weights w(®).

is equal to 1/m

compute the error ep =y ;" wl(t)]l{ht(xi)yi@} of hy

1 1*6,5
7:  set atziln 5
¢

8 set Zy =2¢/e4(1 — &)
: fori=1tomdo
(t+1) _ (0 exp(—ayihi(x;))
) 7 Zt
11:  end for
12: end for

1
13: set Hp = T Zle Oltht =0

10: set w

gt = sz(t)]]-{ht(xi)yi<o}
=1

Using this value, we can compute the weight of the learn classifier oy

11 1—615
= —1n
at 2 Et

Keep in mind that the idea is to learn a hypothesis Hy that be expressed as a linear
combination of weak learners h;. The better the weak learner, the greater the weight.

The remaining of the procedure consist in finding a good reweighting function of
the training samples such that, during the next round, the new classifier hyy; is able to
correct the mistakes done by the classifier h;. This is done using the following update
rule:

WD) Pyl (xi))

[ [ Zt )

where Z; is normalization factor which ensure that the sum of the weights is equal
to 1. We can show (see later for the proof) that Z; = 21/e¢(1 — &¢). The reweighting
function used will then tend to give more weight to the examples for which the classifier
is strongly wrong, and, on the contrary, to decrease the weight of the examples that are
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correctly classified.

Proposition 8.2: Theoretical bound Adaboost

The empirical error of the classifier returned by Adaboost verifies :

T /4 2
Rs(Hr) < exp [—22 <2 - 5) ] :
. 1
Furthermore, if for all t € [1,T], v < <2 — €t>, then:

Rs(Hr) < eXp(—Q'yZT).

Proof. First, we recall that the exponential function is an upper bound of the indicator
function, i.e.

V(x,9) Liynx)<oy < exp(—yh(x)).
We can then upper bound the empirical risk Rg(Hr):
1 m
Rs(Hr) = p- Z Ly, h(x;)<0}>
i=1
< LS expl-yitir(xi)
— XPpl—Y; Xi)).
= — eXpl—YiiiT

We can now express this last sum using the normalization factor Z; and the weights

wgtﬂ). Indeed, we have:

(t+1) _ (0 XP(=uyile(Xi))

w:
7 )
Z

_ 1 % exp(— 22:1 ashs(zi))
m [Ty Zs

Thus, the empirical risk can be upper bounded as:
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Rs(Hr) < %ZGXP(—%HT(XJ),
=1

< iz (mHZ) TH)
m’i:l t=1
T

<[I2

t=1

We will now focus on the normalization factor and see how we can write it as a
function of the classification error ¢; for all t € [1,T7].

Zw exp(“aryihi(xi)),
= Z wgt)exp(—at)—l— Z wgt)exp(()zt)7

zylht(xz)—l i'yihz(xi):—l

= (1 —¢ey) exp(—ay) + erexp(ay),

[ 1—
1_5t 1 - + &t Et
—ct

= 2\/ Et(l — Et

As the empirical risk Rg(Hr) is upper bounded by the product of the normalization
factors, we directly have:

T
Rs(Hr) < [] %
t=1

T
< [[2vet-e,
t=1
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1
This ends the first part of the proof. Furthermore, if for all ¢, v < (2 — €t>3

Rs(Hr) < exp [-2) (; ~ st)2] :

t=1

IN

B T
exp —2272]7
L t=1
< exp [—2T’y2] .
O

We did not explain previously where the expression of «; comes from, but the
answer is in the previous proof. Indeed, it is chosen to minimize the upper bound of the
empirical error. Thus it is chosen to minimize the function:

p:ra— (1 —¢g)exp(—a) + e exp(a).

This function is convex as a convex combination of two convex functions. So, it
reaches its minimum for a single value oy which verifies Euler’s Equation:

Vp(ar) = 0,
—(1 — &) exp(—ay) +epexp(ay) = 0,
(1 —ep)exp(—ay) = erexp(oy),
1-— Et

= grexp(2ay),
€t

1 (15t >
o = —1In gt ).
2 Et

Note also that the proof is available not only for a binary output A but also for
type of hypothesis for which the output is in the range [—1, +1].
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Link with Gradient Descent We can draw the link between the algorithm Adaboost
and a gradient descent algorithm called coordinate descent, we just have to change our
point of view on the algorithm.

Let us consider a set of base learners hq, ho, ..., hy and a function Hp which will
depend on vector a and defined by

T
= _aihr
=1

Let us also consider a set of m labeled examples S = {(x;,v;)}. We aim to solve
the following optimization problem:

T
1
OI[Iel]kn Eexp( yiHr(x;)) = O{Iglﬁg EZGXP (—yiz::atht(xi)> .

We name this objective function F' and we see that is exactly the upper bound of
the empirical risk of Hp. It is exactly the function minimized by Adaboost. F' is also a
convex function of « as the sum of convex functions.

The idea of the coordinate descent is to update only one coordinate of the vector
we aim to find at each round the gradient descent algorithm. More precisely, starting
from a vector a®) at a given round k of the gradient descent:

k k k k
o = (ot o o) alh)
We change only one coordinate, let us say the i-th coordinate, to this vector to get
a new vector a®**t1)_ at round k + 1. So that:

Vj #t, oz§k+1) = a§k) and agkﬂ) = agk) + p x d,

where p is a learning rate and d; is selected direction or coordinate that is updated.

If we consider the function g defined at iteration k by g = Zt 1 atk+1)h Then
the coordinate descent update coincides with the update grx+1 = gx + ph;. Thus, since
both algorithms start with go = 0, to show that Adaboost coincides with coordinate
descent applied to F, it suffices to show at every iteration k, coordinate descent selects
the same base hypothesis h; and step p as Adaboost.

We will assume by induction that this holds up to iteration & — 1, which implies
the equality gr_1 = Hi(pk_l), and will show then that it also holds at iteration k.
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Here, at reach round k, we will select the maximum descent direction, that is
the direction d; along which the derivative of the objective function f is the largest in
absolute value, and of selecting the best step along that direction, that is of choosing p
to minimize F(a®*~Y 4 pdy).

We first need to introduce similar quantities as for the boosting algorithm. We will
(k)

denote by w; "’ the weight of the i-th example at iteration k:
T (k1)
o _ o2 (5 T 0 e) exp (<puges (x0)
w . = = = = 5
% Zk; Zk

where Zj, is a normalization factor, such the sum of the weights is equal to 1. Since
Jh_1 = H:(kal), we have wb) = w(k),
We can also define the expected error of a base learner h; with respect to the

distribution w*) as:

~(k
& = B [gnen]

The directional derivative of F' at a*~1) along dj, is denoted by F'(a*=1 d;) and
defined by

Fla® ) d)) = 1o F@ 4 pd) = F(a7D)
p—0 p

1 _
Since F(a*= + pd;) = - D ity €xp (_yi S ot Vhe(x) — Pyz‘hz(xi)>, the di-
rectional derivative can be expressed:

m T
1 _
Fl(a* Y d) = — EE :yihl(xi)eXp(_yi E agk Dhy(x;),
i=1 t=1

1 & (k) ~
= - *Zyihz(xi)wgk)zk,
mi3

Z

iy hy(xi)=1 iyihy(x)=-1

- i’; 1" -],

134 - Statistical Supervised Machine Learning



(k Zy
= (25" - 17"

(k)

The selected direction is then the one that minimizes &;". So the base learner h;
selected at round k is the one with the smallest expected error on the sample S with
respect to distribution w*) = w(*) on the sample. This is exactly the choice made by
Adaboost at the [-th round.

It remains to see how the step size is computed along the chosen direction d;. the
step size p is the solution of the following convex optimization problem

min F(a* Y + pdy).
o

To minimize this quantity, it is enough to look for the value of p where its gradient
vanishes.

V,F(a* Y 4 pd) = o0,

m T
1 _
m Zlyihl(xi)exp <_yi ;agk l)ht(xi) - pyihl(xi)> = 0,

Zyihl(xi>w§k)2kexl)(_Pyihl(xz’)) = 0,
=1

> witu(xi)il” exp (—pyihu(xi)) = 0,
i=1

(1-&")exp(—p) — & exp(p) = 0,

~(k)

1 1-¢
p = —In|——7——|.
2 ( & )

This proves that the step size chosen by coordinate descent coincides with the
weight ay, assigned by AdaBoost to the classifier chosen in the k-th round. Thus, coor-
dinate descent applied to exponential objective F' precisely coincides with Adaboost and
F' can be viewed as the objective function that Adaboost seeks to minimize.

8.2.3 Stacking

Stacked Generazation or Stacking [Wolpert, 1992, Dzeroski and Zenko, 2004] is another
ensemble methods which works rather differently from bagging and boosting. Although
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the idea is always to combine models in order to optimize performance, stacking is a kind
of meta-model that will be learned with the help of several sub-models.

The aim of this ensemble method is to study or learn how different models, with
different predictive capabilities, can be optimally combined. The differences between the
two previous procedures are as follow: (i) all the models can be different (for instance
we can combine an SVM algorithm with decision tree) and they are learned using the
same dataset; (ii) the weight of each model is not learned iteratively. All the models
are learned independently and a meta model is then used to learn the optimal weight to
assign to each base learner.

Its architecture involves at least two different learner to be used and we thus have
two different steps in the procedure:

1. learn a set of base learner on a training data,

2. using the predictions made by each model as new features for the meta-model which
will then learn a good combination of these predictions.

As the reader may have noticed, if each sub-model h; is working with the initial
features x, the meta-model is working with the predictions of each sub-model, i.e., the
features of the metal model are (hj(x), ha(X),...,hr(x)). Note that we dot specify the
output of h; and it can be a real value, a binary output, probability, etc.

At first glance, it seems rather simple to learn this assembly model: all we have to
do is train our models on the training data and then reuse this data to learn our meta-
model. However, this method is not the best in terms of generalization performance.
Indeed, by using the same data to learn our sub-models and our meta-model, we increase
the risk of over-fitting. As a result, the training subset we submit to the meta-model will
not be the data used to learn the sub-models, but rather the data used to validate the
sub-models, i.e., our validation data resulting in a training-validation procedure.

We can go a little bit further and learn what we call a Super Learning [Van der Laan et al., 2007]
which can be seen as a generalization of stacking with k-fold cross validation procedure
as depicted in Figure 36.7

The procedure can be described as follows:

1. Split the training data into k-folds (as in a k-fold cross validation procedure)

2. Train each base learner on k — 1 folds and use the remaining by computing their
outputs through each base learner.

" This image was extracted from the Super Learner course, slide 17.
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Figure 36: Illustration of the Super Learner strategy with a k-fold cross validation pro-

cedure, where k
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3. Repeat the previous point by changing the validation fold until all folds have been
used as the wvalidation one.

4. Use the new representation of the data to learn the parameters of your meta-model.

5. Evaluate its performance on the test data.

The question that might legitimately be asked is that of the classic cross-validation
procedure. How can we use our data not only to learn our model, but also to ensure that
we have the best base learners, and therefore a good assembly model? How can we tune
our base learner hyper-parameters? Is this really necessary?

We’ve kept these questions so that the reader can draw on previous explanations
and discuss possible answers. We end our presentation of assembly methods with the
one that is certainly the best known and most widely used in industrial practice, the
Gradient Boosing

8.3 Gradient Boosting

The Adaboost algorithm (see Section ?7?) is based on the exponential loss, however, such
a loss is not suited for all settings and it is sometimes better to use other losses de-
pending on the model you want to learn or for a specific application. This motivation
leads us to the presentation of a more general boosting algorithm, the Gradient Boost-
ing |Friedman, 2000].

Generalities Unlike the well-known Adaboost algorithm [Freund and Schapire, 1999],
gradient boosting performs an optimization in the function space rather than in the
parameter space. At each iteration, a weak learner h; is learned using the residuals
(or the errors) obtained by the linear combination of the previous models. The linear
combination H; at time ¢ is defined as follows:

H; = Hy 1 + azhy (22)

where H;_; is the linear combination of the first ¢ — 1 models and a4 is the weight
given to the t-th weak learner. The weak learners are trained on the residuals r; of the
current model. These residuals are given by the negative gradient, —g;, of the used loss
function ¢ with respect to the current prediction H;_1(x;):

aﬁ(ynHt—l(Xz’))] '

i = gi(%i) = — [ OH;_1(x;)

Once the residuals r; are computed, the following optimization problem is solved:

138 - Statistical Supervised Machine Learning



Algorithm 6: Gradient Boosting [Friedman, 2000]
Inputs : Training set S = {(x;,vi)}.~;, number of models 7', a loss ¢
Output: a model Hy = Hy + ZtT:1 ahgt (x)
1: Initial hypothesis Hy H(x;) = arg min> v, l(yi,p) Vi=1,...,m

pER
2: fort=1to T do 50w H
3:  Compute pseudo-residuals: ¢; = — (; t_l(XZ)), Vi=1,...m
6Ht_1(xi)
4:  Fit the residuals: a; = arg min Y, (i — ha(x;))? to learn the new hypothesis

acRd
5:  Learn the weight of the classifier hg::

ol = arg min Y% U(yi, Hi—1(x;) + ahge (%))

a€R*
6: Update Ht(Xi) = Ht—l(xz’) + Oéthat (Xl)
7: end for=0

ht, ap) = arg min ri — ah(x;))?.
(he, o) g m ;( (xi))

Finally, the update rule (22) is applied.

This algorithm has been first developed for classification and regression trees, and
most of the work and libraries such as XGBoost [Chen and Guestrin, 2016] are using
decision trees as weak learners. To be considered as weak learners, the learners mainly
consist in decision stumps or tree with a small depth. Gradient boosting, on the contrary
of Adaboost allows to use custom losses. The procedure is summarized in Algorithm 6.

Exemple 8.2. Let us show what are the pseudo residuals for two different losses £: the
square loss for a regression task and the logistic loss for classification task.

e Using the square loss £, the pseudo residuals are defined by:

iy, B ()
v= OH,1(x)
Ay — Hi-1(x))?
OH, 1 (x)
=2(y — Hi—1(x)).

The pseudo residual is just twice the difference between the true value and the
predicted value (remember that this loss is mainly used in the regression setting).
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e Using the logistic loss ¢ (for classification), the pseudo residuals are defined by:

_ Oly, Hi (%))

<

0H;_1(x)
_ Oln (1 + exp (—2yH;—1(x)))
0H;_1(x) ’
2y

(1 +exp(—2yH;—1(x)))

This is not the commonly used version of this loss that is used. Because Hy_1(X)
s a real value, we rather pass this output in the logistic function in order to get
probabilities to belong in a given class.

In such a case, the pseudo residuals are given by:

My, Ha (%)
v= OH,_1(x)
__O—yl(o(Hia(x) = (1 —y)In(1 —In(o(H:1(x))))
9H, 1 (x) ’

=Y—- O-(Ht—l(x))a
where o denotes the logistic function o(x) = (1 +e~7).

We can also draw a parallel between the gradient boosting algorithm and a gra-
dient descent algorithm. This is more natural since the algorithm involves the gradient.
Here, the parallel can be drawn with the gradient descent with optimal steepest descent
(or optimal step) as shown by Algorithm 7.

Note that the Gradient boosting, in its original presentation, is based on the use of
the mean squared error at the step consisting in fitting the pseudo-residuals. However,
we can choose any loss function we want as the exponential one for classification tasks
for instance. Furthermore, the reader has to be careful the loss £ we aim to optimize is
the same as the one used to find the weights of the base learners.

Presentation of XGBoost We will finish this presentation on boosting by going
back to our decision trees and presenting XGBoost [Chen and Guestrin, 2016] which is
a powerful and very fast boosting algorithm based on trees. We first explain how the
weights are computed for each leaf, then we explain the splitting criterion that is used.
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Algorithm 7: Gradient Boosting [Friedman, 2000]
Inputs : Training set S = {(x;,vi)}.~;, number of models 7', a loss ¢
Output: a model Hy = Hy + ZtT:l ahgt (x)

1: Initialization Hy HO%(x;) =arg min> i l(y;,p) Vi=1,...,m
pER

~0lyi, Hi—1(x4))

GHt_l(xi)

2: fort=1to T do
3:  Compute the gradient: ¢; =

, Vi=1,...m

4:  Learn a model that approximates this gradient a; = arg min Y"1 (9 — ha(x;))?

a€Rd?
to learn the new hypothesis
5. Find the optimal weight hye : of = arg min > 0 (y;, Hi—1(xi) + ahge (%))
a€R*
6: Update Hy(x;) = Hy—1(x;) + athge (x;)
7: end for=0

We consider a loss £ (there is no particular assumption on it) and the following
optimization problem:

L

min Y0y, 50) + B2+ 5 S ()2 (23
i=1 j=1

A .
where 5L and 5 Zle(hgj ))2 are two regularization terms used to control the num-

ber of leaves and the weight of each leaf ft(j ) for the learned tree at iteration t.

We recall that the models are learned in an additive manner, so let us denote §(¢=1),

the predicted value by the first ¢ — 1 functions hyg, i.e. gjgt_l) = 22;11 hi(x;) = Hi—1(x;).
Let us now study how the next model is learned. For this purpose, we rewrite the
quantity (23) to minimize as follows:

m L
Sty 6" o) + L+ 5 () (24)
=1

j=1
We only use the additive definition of the model.

In practice, [Chen and Guestrin, 2016] only consider a second order approximation
of the function they aim to optimize. This second order approximation is done with
respect to the predicted value at the previous iteration, i.e. gjgt_l). We will denote by
respectively g and f the first and second order derivatives of the function ¢ with respect

to =Y. We can rewrite (24) as follows:
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m L
L (t—1 1 A .
[ayi, 3Y) + haxi)g (i) + 2h?<xi>f<xi>] FBLH S (29)
i=1 j=1
Remember that we aim to learn the function f; = (hgj )) j=1,....c- S0 let us consider a
leaf j and denote by I; the set of index i such that x; falls in the leaf [;. Thus, using (25),

the function hgj ) shall minimize the following quantity V; for a given index j:

V= X [l ) + 5 O £00) (6 ) (26)

’iEIj

This function is convex and the minimum is given by the solution of Fuler’s equa-
tion, i.e. the function f®) for which the gradient vanishes. This solution is given by:

B@ Zz‘elj 9(x;) (27)
! Zie]j f(Xz) + )“
Exemple 8.3. Let us come back to our previous example where we have considered the
square loss and the logistic loss and let us see what the weights of the leaves are when we
use these two losses.

1
For the square loss ((j(—1) = §(y — =2 The gradient g with respect to the
prediction is

o

jEDy = 98 -0y Z (D)
9 = gpan W) =@ y)-

And the second order derivative f with respect to the prediction is

82£ A (t—1)

F@UY) = W(y

)= 1.

So the optimal value of a leaf h,(fj) is:

, ()
hgj) _ Ziél]‘ 9(xi) _ Zielj (i —9 )
> ier; F(xi) + A X+ 1]

i(o) =0 for all i, we find

that the optimal score in a leaf is equal to the average of the instances values in the
leaf. For subsequent iterations, the optimal score of each leaf becomes the average of the

Thus, when learning the first tree, with the assumption 4
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pseudo-residuals.

Let us now focus on the logistic loss £(g~1) = —(yIn(p(5*~)) + (1 — y) In(1 —
p(5¢=D)), where p is the logistic function.

The gradient g with respect to the prediction is

ol

~(t—1)y __ ~(t—1)\ __ ~(t—1
90 = 5o 0"7) = @) ).

And the second order derivative f with respect to the prediction is

0%y

W(y ) = pT D) (1 — p(ptD)y).

F@Y) =
So the optimal value of a leaf hgj) is:

h(]) _ Zz’elj g(xi) _ Zielj (p(g(t—l)) _ y)
T T FO) A T A ey, p ) (1 - p(GE )

Let us now focus on the splitting criterion. Once the optimal weight is found for
each leaf (27), we can compute the optimal value V* of the loss by using (26), we get:

* . Zielj 9(x) 1 . Zielj 9(x;) ’
V]' - Z _g(Xz)ZiGIj f(xz) T + 5 ()\‘i‘f(Xz)) <_Zie]j f(xz) +)\) )

i€l

2 2
(Zierj Q(Xt)> N 1 (Eie[j (J(XL>)
Dier, SR A T 23 f(x) + A
2
* 1 <Zielj Q(Xi))
r 221’6]]- fxi) + A
This formula is used to measure the quality of a leaf. It can be seen as a generalized

formula for Gini Impurity for any loss function. Using this new measure, they define their
splitting criterion, i.e. the gain associated to a split, as follows:

2 2
1] (Ben o) (S o)) (S o)
2 ZieIL f(xi) + A ZieIR f(xi) + A Zie] f(xi) +A

_/Ba

where I = Iy, U Ip for a binary tree and the parameter 8 is used to control the
number of leaves.
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8.4 Metric Learning

See later, maybe next year.
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9 Applications and Learning in Practice
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