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Bayesian Method

Bayesian Method

To assign a label c to an unknown instance x , we have to compute the
posterior probability p(y = c |x).

Bayesian Method

The Bayesian method consists of detecting the optimal class c ∈ Y of an
example x ∈ X by applying the Maximum a posteriori (MAP) decision
rule:

∀c ∈ Y, p(y = c |x) =
p(x |y = c)p(y = c)

p(x)

y(x) = arg max
c

p(y = c |x).

That means that y(x) = arg maxc p(x |y = c)p(y = c).
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Bayesian Method Bayesian Error

Bayesian Error

Minimal prediction error due to the nature of the distributions of
the classes.
Example: normal distributions, balanced classes
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Bayesian Method Bayesian Error

Bayesian Error

Minimal prediction error due to the nature of the distributions of
the classes.
Example: normal distributions, unbalanced classes
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Bayesian Method Bayesian Error

Bayesian Error

Exercise:

Let fc1 and fc2 be the densities of two classes c1 and c2:
fc1(x) = 3

2x
2 + x for 0 < x < 1

fc2(x) = 1 for 3
4 < x < 7

4 .

Draw the distribution and compute their bayesian error.

Solution
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Bayesian Method Bayesian Error

Bayesian Method

Underlying conditions to solve this problem

To use the bayesian method, one needs some priors:

1 Know the a priori probabilities p(y = c) of the different classes.

2 Know the probabilities of the observations given the classes
p(x|y = c).

Without any background knowledge, this requires to estimate these two
quantities from the training sample S .
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Bayesian Method Statistical Methods

Statistical Methods

Estimation of p(y = c)
We can either assume that the classes are equally distributed, such
that p(y = c) = 1

|Y|
or that the learning set S has been correctly drawn from the target
probability distribution. Therefore, we can use the frequency of each
class such that p(y = c) = |Sc |

|S| where Sc is the set of instances of
class c .
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Bayesian Method Statistical Methods

Estimation of p(x|y = c)
We can distinguish two types of approaches:

1 The parametric methods which assume that p(x |y = c) follows a
given statistical distribution. In this case, the problem to solve
consists in estimating the parameters of the considered distribution
(e.g. normal distribution with σ and µ or Binomial distribution with
p).

2 The non parametric methods which do not impose any constraint
about the underlying distribution, and for which the densities
p(x |y = c) are locally estimated around x .
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k-Nearest Neighbors

k-Nearest Neighbors

Classification with k-NN

Non-parametric method by which an instance is assigned to the most
common class in its neighborhood. The neighborhood is determined by the
k closest training points.

c = arg max
c∈Y

kc
k

with kc the number of training instances of class c in the neighborhood.

1 Training: memorize training set

2 Prediction of yi : majority vote of the k nearest neighbors of xi

It assumes that p(x |y = c) is locally regular.
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k-Nearest Neighbors

k-Nearest Neighbors

Algorithm

Input: x : an instance
Input: S : a sample
Output: y : the class of x
begin

foreach (xi , yi ) ∈ S do
Compute the distance d(xi , x);

end
Sort the n distances by increasing order;
Count the number of occurrences of each class c among the k nearest

neighbors;
Assign to x the most frequent class.
return y

end
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k-Nearest Neighbors Theoretical Analysis

k-Nearest Neighbors

Is kc
k a good estimation of p(yi = c |xi )?

Proof

Let p be an unknown probability density. Let us assume we want to
estimate p(x). The probability P of observing x in a portion r of the space
of volume V is:

P =

∫
V
p(x)dx

Assuming that p(x) is continuous and does not signicantly change in r , we
can approximate P such that:

P ≈ P̂ = p(x)× V

.
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k-Nearest Neighbors Theoretical Analysis

k-Nearest Neighbors

Is kc
k a good estimation of p(yi = c |xi )?

Proof

P can also be estimated by the proportion of training data in r :

P ≈ P̂ =
k

n

with k the number of points in r and n the total number of points.
Therefore, we can deduce that

p(x) ≈ P

V
=

k

nV

.
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k-Nearest Neighbors Theoretical Analysis

k-Nearest Neighbors

Is kc
k a good estimation of p(y = c |x)?

k-NN proofs

The posterior probability p(y = c |x) can be rewritten as:

p(y = c |x) =
p(x |y = c)p(y = c)

p(x)
.

Assuming that x belongs to the portion of the space r of volume V :
p(x |y = c) ≈ kc

ncV
, p(y = c) = nc

n and p(x) ≈ k
nV .

Therefore:

p(y = c |x) ≈
kc
ncV

nc
n

k
nV

=
kc
k
.

arg max
c

p(y = c |x) = arg max
c

kc
k
.
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k-Nearest Neighbors Theoretical Analysis

1-Nearest Neighbor

Special case: k=1

1-NN boils down to partitionate the space X into Voronoi cells and affect
them the label of their centroid.
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k-Nearest Neighbors Theoretical Analysis

k-Nearest Neighbors

Convergence properties of the 1-Nearest Neighbor

Theorem

Let x ′ be the nearest neighbor of x ,

lim
n→∞

P(d(x , x ′) > ε) = 0, ∀ε > 0.

In other words,
lim
n→∞

p(y = c |x ′) = p(y = c |x).
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k-Nearest Neighbors Theoretical Analysis

k-Nearest Neighbors

Proof

Let p be the probability that the hypersphere s(x , ε) centered at x of radius ε
does not contain any point of S and pε the probability that a point xi ∈ S is
inside the hypersphere:

P(d(x , x ′) > ε) = p = P(x1 /∈ s(x , ε), ..., xn /∈ s(x , ε))

=
n∏

i=1

P(xi /∈ s(x , ε)) =
n∏

i=1

(1− P(xi ∈ s(x , ε)))

assuming that S is i.i.d., so the events are independent. Then,

p =
n∏

i=1

(1− pε) = (1− pε)
n

and

lim
n→∞

p = 0.
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k-Nearest Neighbors Theoretical Analysis

k-Nearest Neighbors

How to choose k?

if k too small, noise has great influence

if k too big, local information is lost

Recall that, p(x) ≈ p̂(x) = k
nV .

Theorem

When n is increasing, p̂(x) converges to p(x) if the following three
conditions are fulled:

lim
n→∞

V = 0

lim
n→∞

k =∞

lim
n→∞

k

n
= 0

If we are considering r as an hypersphere, all three conditions are fullfilled
for k =

√
n.
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k-Nearest Neighbors Computational Analysis and Optimizations

k-Nearest Neighbors

Computational and Memory Storage Analysis

Without any optimization,

complexity: O(nd + nk) for distances computation and neighbors
selection;

memory: O(n) for distances storage.

Two strategies to reduce these costs:

Reduce n while keeping the most relevant examples (e.g. the
condensed nearest neighbor rule (Hart 1968)).

Simplify the computation of the nearest neighbors.
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k-Nearest Neighbors Computational Analysis and Optimizations

k-Nearest Neighbors

Remove from S the outliers and the examples of the bayesian error region.

Algorithm

Input: S : a sample
Output: Scleaned : a smaller sample
begin

Split randomly S into two subsets S1 and S2;
while no stabilization of S1 and S2 do

Classify S1 with S2 using the 1-NN rule;
Remove from S1 the misclassied instances;
Classify S2 with the new set S1 using the 1-NN rule;
Remove from S2 the misclassied instances;

end
Scleaned = S1 ∪ S2;
return Scleaned

end
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k-Nearest Neighbors Condensed Nearest Neighbors

Condensed Nearest Neighbors

Remove from S the irrelevant examples.

Algorithm

Input: S : a sample
Output: Sselected : a smaller sample
begin

Sselected ← Ø;
Draw randomly a training example from S and put it in Sselected ;
while no stabilization of Sselected do

for instance xi ∈ S do
if xi missclassified using 1NN with Sselected then

Sselected ← xi
end

end

end
return Sselected

end
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Conclusions

Conclusions

1 With a sufficiently large number of training examples, a k-NN classier
is able to converge towards very complex target functions.

2 It is simple and theoretically well founded.

3 There exist several solutions to overcome its problems of algorithmic
complexity (time and space).
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