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Bayesian Method
Bayesian Method

To assign a label ¢ to an unknown instance x, we have to compute the
posterior probability p(y = c|x).

| A\

Bayesian Method

The Bayesian method consists of detecting the optimal class ¢ € Y of an
example x € X by applying the Maximum a posteriori (MAP) decision
rule:
p(xly = c)ply = ¢)

p(x)

Vee Y, ply = c|x) =

y(x) = argmax p(y = c|x).
Cc

That means that y(x) = argmax. p(x|y = ¢)p(y = ¢).
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Bayesian Method Bayesian Error

Bayesian Error

Minimal prediction error due to the nature of the distributions of
the classes.

Example: normal distributions, balanced classes
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Bayesian Method Bayesian Error

Bayesian Error

Minimal prediction error due to the nature of the distributions of
the classes.
Example: normal distributions, unbalanced classes
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Bayesian Method Bayesian Error

Bayesian Error

Exercise:

Let -1 and f.o be the densities of two classes ¢; and ¢»:
fa(x) =3x2+xfor0<x <1
feo(x) =1for 3 <x < L.

Draw the distribution and compute their bayesian error. J
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Bayesian Method Bayesian Error

Bayesian Method

Underlying conditions to solve this problem
To use the bayesian method, one needs some priors:
© Know the a priori probabilities p(y = c) of the different classes.
@ Know the probabilities of the observations given the classes
p(x|ly = c).
Without any background knowledge, this requires to estimate these two
quantities from the training sample S. )
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Bayesian Method Statistical Methods

Statistical Methods

Estimation of p(y = c)

@ We can either assume that the classes are equally distributed, such
1
that p(y = ¢) = Wl

@ or that the learning set S has been correctly drawn from the target

probability distribution. The|ref|ore, we can use the frequency of each
Sc

class such that p(y = ¢) = 5] Where Sc is the set of instances of
class c.
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Bayesian Method Statistical Methods

Estimation of p(x|y = c)

We can distinguish two types of approaches:

@ The parametric methods which assume that p(x|y = c) follows a
given statistical distribution. In this case, the problem to solve
consists in estimating the parameters of the considered distribution
(e.g. normal distribution with o and p or Binomial distribution with
P)-

@ The non parametric methods which do not impose any constraint
about the underlying distribution, and for which the densities
p(x|y = ¢) are locally estimated around x.
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k-Nearest Neighbors
k-Nearest Neighbors

Classification with k-NN

Non-parametric method by which an instance is assigned to the most
common class in its neighborhood. The neighborhood is determined by the

k closest training points.
k

c = argmax —
cey
with k. the number of training instances of class ¢ in the neighborhood.
© Training: memorize training set
@ Prediction of y;: majority vote of the k nearest neighbors of x;

It assumes that p(x|y = c) is locally regular.
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k-Nearest Neighbors
k-Nearest Neighbors

Algorithm

Input: x: an instance
Input: S: a sample
Output: y: the class of x
begin
foreach (x;,y;) € S do
| Compute the distance d(x;, x);
end
Sort the n distances by increasing order;
Count the number of occurrences of each class ¢ among the k nearest
neighbors;
Assign to x the most frequent class.
return y

end
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k-Nearest Neighbors = Theoretical Analysis

k-Nearest Neighbors

Is % a good estimation of p(y; = c|x;)?

Proof

Let p be an unknown probability density. Let us assume we want to

estimate p(x). The probability P of observing x in a portion r of the space

of volume V is:

P:/Vp(x)dx

Assuming that p(x) is continuous and does not signicantly change in r, we

can approximate P such that:

Pr~P=p(x)xV
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k-Nearest Neighbors = Theoretical Analysis

k-Nearest Neighbors

Is % a good estimation of p(y; = c|x;)?

Proof
P can also be estimated by the proportion of training data in r:
~  k
P~P=-—
n

with k the number of points in r and n the total number of points.
Therefore, we can deduce that
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k-Nearest Neighbors = Theoretical Analysis

k-Nearest Neighbors

Is % a good estimation of p(y = c|x)?

k-NN proofs

The posterior probability p(y = c|x) can be rewritten as:

_ o) = Py =)ply =€)
p(y - ’ ) p(X) :

Assuming that x belongs to the portion of the space r of volume V:

p(xly =c¢) = o V, p(y = c) = % and p(x) =~ %

Therefore:
ke nc K
vV c
p(y:C|X)%nLn:?'
nV

ke
argmax p(y = ¢|x) = argmax —.
c Cc k
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k-Nearest Neighbors = Theoretical Analysis

1-Nearest Neighbor

Special case: k=1

1-NN boils down to partitionate the space X into Voronoi cells and affect
them the label of their centroid.
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k-Nearest Neighbors = Theoretical Analysis

k-Nearest Neighbors

Convergence properties of the 1-Nearest Neighbor

Let x” be the nearest neighbor of x,

lim P(d(x,x") >¢€)=0, Ve > 0.

n—o00

In other words,
lim p(y = c|x) = p(y = c[x).

n—o0
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k-Nearest Neighbors = Theoretical Analysis

k-Nearest Neighbors

Let p be the probability that the hypersphere s(x, €) centered at x of radius e
does not contain any point of S and p. the probability that a point x; € S is
inside the hypersphere:

P(d(x,x") > €)= p = P(x1 & s(x,€), ..., Xn & s(x,€))
—HPX,§ES(X e))—H(l— (xi € s(x,€)))

assuming that S is i.i.d., so the events are independent. Then,

n

p=]]0-p)=(1-p)

i=1

and

lim p=0.

n—oo
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k-Nearest Neighbors = Theoretical Analysis

k-Nearest Neighbors

How to choose k?
@ if k too small, noise has great influence

o if k too big, local information is lost

Recall that, p(x) = p(x) = £ .

Theorem
When n is increasing, p(x) converges to p(x) if the following three
conditions are fulled:
lim V=0
n—o0
lim k= oo
n—o0
lim — =0
n—oo N )

If we are considering r as an hypersphere, all three conditions are fullfilled

for k = /n.
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k-Nearest Neighbors Computational Analysis and Optimizations

k-Nearest Neighbors

Computational and Memory Storage Analysis
Without any optimization,

o complexity: O(nd + nk) for distances computation and neighbors
selection;

e memory: O(n) for distances storage.

Two strategies to reduce these costs:

@ Reduce n while keeping the most relevant examples (e.g. the
condensed nearest neighbor rule (Hart 1968)).

@ Simplify the computation of the nearest neighbors.
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k-Nearest Neighbors Computational Analysis and Optimizations

k-Nearest Neighbors

Remove from S the outliers and the examples of the bayesian error region.

Algorithm

Input: S: a sample

Output: Sgjeaneqd: a smaller sample

begin

Split randomly S into two subsets S; and So;

while no stabilization of S; and S> do
Classify S; with S, using the 1-NN rule;
Remove from S; the misclassied instances;
Classify Sy with the new set S; using the 1-NN rule;
Remove from S, the misclassied instances;

end

Scleaned = S1 U Sy;

return Scleaned

end
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k-Nearest Neighbors Condensed Nearest Neighbors

Condensed Nearest Neighbors

Remove from S the irrelevant examples.

Algorithm

Input: S: a sample
Output: Scejected: a smaller sample
begin
Selizsiad) & ?;
Draw randomly a training example from S and put it in Seejected;
while no stabilization of Ssejecteq dO
for instance x; € S do
if x; missclassified using 1NN with Ssejected then
‘ Sse/eci.‘ed — X
end
end
end
return Seejected

end

v
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Conclusions
Conclusions

© With a sufficiently large number of training examples, a k-NN classier
is able to converge towards very complex target functions.

@ It is simple and theoretically well founded.

© There exist several solutions to overcome its problems of algorithmic
complexity (time and space).
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