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Correction
Part B, question 4 was considered as a bonus

Exercise 1 : Convexity and Rate of Convergence (8.5 points)

The aim of this exercise is to study the function fγ : R2 → R defined by :

fγ(x, y) =
1

2
(x2 + γy2 + 2xy) + 2x+ 2y, γ ∈ R.

Part A : A study of fγ (4.5 points)

This first part is dedicated to the study of the function fγ .

1. Study the convexity of the function fγ .

In order to study the convexity of fγ , we compute its Hessian matrix :

Hfγ (x, y) =

(
1 1
1 γ

)
.

The Trace of the matrix H is equal to 1 +γ, its Determinant is equal to γ− 1. The function fγ is
convex if both Trace and Determinant are non-negative. So fγ is convex for γ ≥ 1. It is strictly
convex for γ > 1. If γ < 1, the Determinant is negative, it means that the function is neither
convex or concave.

2. Give the solution of Euler’s Equation, i.e. the solution of the linear system ∇fγ(x, y) = (0, 0),
for all values of γ.

We need first to compute the Jacobian ∇fγ(x, y), it is given by :

∇fγ(x, y) =
(
x+ y + 2 γy + x+ 2

)
.

We then have to solve the following linear system :

x+ y + 2 = 0,

x+ γy + 2 = 0.

By substracting the first line to the second one, we have :

x = −y − 2,

y(γ − 1) = 0.

We have now two cases, depending on the value of γ :

1



• if γ 6= 1, then the second equation implies y = 0 and the first one x = −2.
• if γ = 1 then y can be any real value and x should be equal to −y − 2.

3. Give the nature of the previous extrama of the function (the nature of the extremum depends
on γ).

According to the previous questions :

• if γ > 1, fγ reaches its minimum at the point (−2, 0) and this the global minimum because
fγ is convex.

• if γ = 1, fγ reaches its minimum at all the points on the line of equation x = −y − 2. At all
this points, the function fγ reaches its global minimum because fγ remains convex.

• if γ < 1, the point (−2, 0) is no more minimum. This is a saddle point in this case because
fγ is neither convex or concave.

4. Show that A =

(
1 1
1 γ

)
and find the expression of b ∈ R2 such that, for all u = (x y)T :

fγ(u) =
1

2
uTAu− bTu,

We set b = (b1 b2)
T and we develop the above expression. We have :

1

2
uTAu− bTu =

1

2

(
x2 + γy2 + 2xy

)
− b1x− b2y

By identifying the two expressions of fγ we have :

b = (−2 − 2)T .

5. Give the algorithm of the Gradient Descent with Optimal Step.

I give the algorithm in the context of the problem. It was also possible to give it for a general
function f .

1) Choose an initial point u0 in the domain of definition of the function fγ
2) Repeat for all k ∈ N

• Compute ∇fγ(uk) = Auk − b
• Choose the optimal learning rate ρ such that :

ρk = Argmin
ρ∈R+

f(uk − ρk∇fγ(uk)).

So that ρk is equal to
‖Auk − b‖22
‖Auk − b‖2A

in this context.

• Update : uk+1 = uk − ρ∇fγ(uk).
3) Till ‖∇f(uk+1)‖2 ≤ ε
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Part B : Rate of Convergence of the Gradient Descent with Optimal Step (4 pts)

In this part we assume that γ > 1 so that fγ is strictly convex. The aim is to study the rate of
convergence of the Gradient Descent with Optimal Step. This rate depends on the Condition Number

of the matrix A defined by Cond(A) =
λmax
λmin

, where λmax (resp. λmin) is the largest (resp. the smallest)

eigenvalue of A.

1. Compute the two eigenvalues of the matrix A.

The eigenvalues are the roots of the polynom :

det (A− λI) =

(
1− λ 1

1 γ − λ

)
= (1− λ)(γ − λ)− 1 = λ2 − λ(γ + 1) + γ − 1.

The roots are defined by :

λ± =
γ + 1±

√
∆

2
,

where ∆ = (γ + 1)2 − 4(γ − 1) = γ2 − 2γ + 5 = (γ − 1)2 + 4.

2. Give the expression of Cond(A) with respect to γ. Give an equivalent of the Condition Num-
ber Cond(A) for large values of γ.
Hint : for large values of γ we have (γ − 1)2 + 4 ' (γ − 1)2

For large values of γ we have λ± '
γ + 1± (γ − 1)

2
. So that the Condition Number Cond(A)

can be approximated by :

Cond(A) =
λmax
λmin

=
λ+
λ−

=

γ + 1 + γ − 1

2
γ + 1− γ + 1

2

' γ

1
= γ

3. We denote by u? the point where the function fγ reaches its minimum and u0 the initial point of
our algorithm. The rate of convergence η of the studied algorithm is defined by η = 1−Cond(A)−1

and we have :
‖uk+1 − u?‖A ≤ ηk‖u0 − u?‖A. (1)

The figure below illustrates the convergence of the function fγ for two different values of γ and
with the studied algorithm. We also choose u0 = (20 1).
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Say for which curve the value of γ is the largest one. What is the impact of the Condition Num-
ber Cond(A) on the rate (or speed) of convergence of the Gradient Descent according to the
Inequality (1) ? Give a condition on Cond(A) for which the convergence rate is fast.

According to Inequality (1), the convergence will be faster if η is close to 0. By definition of η it
means that Cond(A)−1 should be close to 1.

We have seen that Cond(A) = γ so Cond(A)−1 =
1

γ
.

So the larger the value of γ is the slower the convergence is and conversly.
The Gradient Descent with optimal step converges rapidly toward (−2, 0) if γ is close to 1. So
the dashed line represents the case where the value of γ is the largest one.

4. We want to prove the Inequality (1). We denote by ρk the optimal learning rate at the k-th
iteration of the algorithm.

(a) Show that :
‖uk+1 − u?‖2A = ‖(I − ρkA)(uk − u?)‖2A.

Hint : Remember that if u? is a minimum of fγ, then Au? = b where A and b were defined in
the previous part.

It is enough to show that the two vector in the norm are the same. We develop the right hand
side of the equation.

(I − ρkA)(uk − u?) = uk − u? − ρkAuk − ρkAu?,
= uk − u? − ρkAuk − ρkb,
= uk − ρk(Auk − b)− u?,
= uk+1 − u?.

The second line uses the fact that Au? = b.

(b) Now, we assume that for all k ∈ N we have :

‖uk+1 − u?‖2A ≤ ‖I − ρkA‖22‖uk − u?‖2A.
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Show that η2 is an upper bound of ‖1− ρkA‖22, i.e.

‖I − ρkA‖22 ≤ η2 =

(
1− λmin

λmax

)2

.

You have to give an upper bound ‖I − ρkA‖22. First, you shall remember that the optimal
learning rate is given by :

ρk =
‖Auk − b‖22
‖Auk − b‖2A

.

Furthermore, for all PSD matrices A.

λmin(A)I 6 A 6 λmax(A)I,

where the inequalities mean that the eigenvalues of the matrix on the left-handside are less
than all the eigenvalues in the middle and so on.
So, by multiplying on the left by uT and by u on the right for any vector u, we get :

λmin(A)‖u‖2 ≤ ‖u‖A ≤ λmax(A)‖u‖2.

Now, to upper bound ‖I − ρkA‖22, we need to give a lower bound on both A and ρk (because
of minus sign) :
• for A we have the following lower bound λmin(A)I 6 A

• ρk ≥
‖Auk − b‖22

λmax(A)‖Auk − b‖22
=

1

λmax(A)
.

Finally : ‖I − ρkA‖22 = ‖
(

1− λmin
λmax

)
I‖22 ≤

(
1− λmin

λmax

)2

‖I‖2 =

(
1− λmin

λmax

)2

= η2

(c) Conclude.

We conclude using a chain rule :

‖uk − u?‖A ≤ η‖uk−1 − u?‖A,
≤ η2‖uk−2 − u?‖A,
≤ η3‖uk−3 − u?‖A,
≤ ...,

≤ ηk‖u0 − u?‖A.

Exercise 2 : (4.5 points)

Consider the following constrained optimization problem

min
x1,x2

x1 − x2

subject to x21 + x22 − 2x2 = 0

1. Try to represent draw the set of constraints and the function in the (x1, x2)−space and try to
see the solution of this minimization problem.
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2. Provide the Lagrangian formulation of this problem.

3. Deduce the Lagrange dual function associated to this problem.

4. Compute the optimum of this dual function.

5. Deduce the values that lead to an optimal solution in the primal formulation.

6. Check that the duality (weak or strong) holds. If you think you have a strong duality explain
why, otherwise try to provide a justification explaining why this is not the case.
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