
Exercises
Optimization & Operational Research: Part I

The di�culty of the exercises is denoted with some (*), the more (*) you have the more di�cult is the exercise
from my opinion. The exercises are classi�ed with respect to each part of the course.

Inner products and norms

Exercise 1 :

Which of the following applications de�ne an inner product :

• (*) f(x, y) = x1y1 + x2y2.

• (*) f(x, y) = x1y1 + x2y2 − x3 + y3.

• (**) f(x, y) = x1y1 + 2x2y2 + 3x3y3.

• (**) f(x, y) = x21y
2
1 + x22y

2
2 + x33y

3
3 .

Exercise 2 : Frobenius’ Norm

• (*) Show that application 〈., .〉 :Mn,m(R)×Mn,m(R)→ R de�ned by :

〈A,B〉 = trace(ATB),

de�ned an inner product.

• (*) Show that ‖A‖F =
√
trace(ATA) =

√∑n
i=1

∑m
j=1(a

2
ij), and show that it de�nes a norm.

• (**) Show that ‖Ax‖2 ≤ ‖A‖F ‖x‖2 where A ∈Mn,m(R) and x ∈ Rm.

• (**) Show that ‖AB‖F ≤ ‖A‖F ‖B‖F where A ∈Mn,m(R) and B ∈Mm,p(R)

• (*) Calculate the Frobenius norm of the following matrices :

A =

(
1 −3
−3 1

)
B =

 3 −2 3
−2 1 −2
−3 2 3


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Exercise 3 :

The aim of the exercise is to prove the inequality of Minkowski, i.e the triangular inequality for the Lp
norm for p ∈ [1,∞[. x, y are considered as vectors here.

1 ) Let 0 < p, q <∞ such that 1
p
+

1

q
= 1

• (*) Show that ln(xy) = ln(xp)

p
+

ln(yq)

q
for all x, y > 0.

• (*) Use the convexity of the exponential to show Young’s inequality :

|xy| ≤ |x|
p

p
+
|y|q

q
.

2 ) We want to prove now that : ‖xy‖1 ≤ ‖x‖p‖y‖q (Hölder’s inquality)
We consider 0 < p, q <∞ such that 1

r
=

1

p
+

1

q
and x, y ∈ Rn.

• (**) By a good choice of p, q, x and y, show that, applying Young’s inequality :

|xiyi|r ≤
1

p′
|xi|p +

1

q′
|yi|q,

where you should determine the value of p′ and q′.

• (**) Prove Hölder’s inequality using the previous result (�rst you have to take the sum on all i and consider
the special case where r = 1).
Hint: set xi =

xi
‖x‖pp

and yi =
yi
‖y‖qq

3) The triangle inequality for the Lp norm.

• (***) Use successively the triangle inequality and Hölder’s inequality to show that :

‖x+ y‖pp ≤ (‖x‖p + ‖y‖p)
‖x+ y‖pp
‖x+ y‖p

.

This last inequality is called the inequality of Minkowski.

• (*) Show that the application f(x) = p
√∑n

i=1 |xi|p is a norm.

Derivatives

Exercise 1 : Calculous

Calculate the �rst and second order derivatives of the following functions :
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• (*) f(x, y) = 4x2 + exp(xy).

• (*) f(x, y) = 7xy + cos(x) + x2 + 4y2.

• (*) f(x, y) = 4(x− y)2 + 5(x2 − y)2.

• (*) f(x, y) = exp(x2 + y2).

Exercise 2 : Schwarz theorem : a counter example

During the lesson we have seen that, given a function f twice continuously di�erentiable, we always have
:

∂

∂xi

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xi

)
.

Let us now consider the function f de�ned by :

f(x, y) =
xy(x2 − y2)
x2 + y2

, if (x, y) 6= (0, 0) and f(x, y) = 0 if (x, y) = 0.

• (*) Calculate ∂f
∂x

(0, y) and ∂f
∂y

(x, 0).

• (*) Calculate ∂

∂y

(
∂f

∂x

)
(0, 0) and ∂

∂x

(
∂f

∂y

)
(0, 0).

• (*) What can we conclude about f ?

Convex set

Exercise 1 : Using de�nition

• (*) Given two convex sets C1 and C2, prove that the intersection C = C1 ∩ C2 is also convex.

• (**) Show that a set C is convex if and only if its intersection with every straight line is convex .

• (***) Show (using induction) that de�nition of convexity holds for more than two points.

Exercise 2 :

• (*) Let C be a set de�ned by :
C = {x ∈ R | 3x2 − 6x+ 2 ≤ 0}

Show that C is convex.
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• (**) In general, show that the set C de�ned by :

C = {x ∈ Rn | xTAx− bTx+ c ≤ 0},

where A ∈ Sn(R), b ∈ Rn and c ∈ R is convex if A is a PSD matrix.

Exercise 3 :

• (**) Show that the hyperbolic set {x ∈ Rn+ |
∏n
i=1 xi ≥ 1} is convex.

Hint : you can �rst show that, for all x, y ∈ R++ and θ ∈ [0, 1] we have : xθy1−θ ≤ θx+ (1− θ)y.

Convex function

Exercise 1 : Calculous

For the following functions, explain why they are convex :

• (*) f : Rn → R, f(x) =
∑n

i=1 x
2
i .

• (*) f(x, y) = 3x2 + (y − 3)2 + 4x+ 6y + 5.

• (*) f(x, y) = x4 + 6y4 + 2y2 + 9x2 + 3.

• (**) f(x, y) = 6x2 + 5y2 + 6xy.

• (**) f(x, y) = exp(xy) for x > 1 and y < −1.

Exercise 2 : Calculous

Are the following functions convex or not ?

• (*) f(x, y) = (1− x)2 + 100(y − x2)2.

• (*) f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2.

• (**) f(x, y) = 2x2 − 1.05x4 + xy + y2.

• (**) f(x, y) = sin(x+ y) + (x− y)2 − 1.5x+ 2.5y + 1.

• (***) f(x, y) = 10 + (x2 − cos(2πx)) + (y2 − cos(2πy)).

4



Find the local or global minimum of the two �rst function

Exercise 3 : A PSD matrix

Let (x1, x2, ..., xn) be n vector of Rp, we denote by X ∈ Rn×p the matrix where each the ith row is the
vector xi.
We consider the matrix G ∈ Rn×n de�ned by G = XXT . The matrix G is called the Gram Matrix.

• (**) Show that the Gram Matrix is a PSD matrix using the de�nition of a PSD matrix.

Optimization and Algorithm

Exercise 1 : A Quadratic function : Matyas function

We consider the function f : [−10, 10]2 → R de�ned by :

f(x, y) = 0.26(x2 + y2)− 0.48yx

• (*) Is the function f convex or not ?

• (*) Find the solution(s) of the equation∇f(x, y) = 0.

• (*) What is the global minimum of the function ?

• (*) We set u0 = (x, y)(0) = (1, 1), the initial point of the gradient descent with the optimal learning rate
(or optimal step)

(a) First recall what the gradient descent with optimal step consists of.
(b) Calculate u1 and u2.

Exercise 2 : The Rosenbrock function

We consider the function f : R2 → R de�ned by :

f(x, y) = (1− x)2 + 10(y − x2)2.

• (*) Is the function f convex or not ?

• (*) Find the solution(s) of the equation∇f(x, y) = 0.

• (*) What is the global minimum of the function ?

• (*) We set u0 = (x, y)(0) = (2, 2), the initial point of the gradient descent with a learning rate ρ = 0.5.
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(a) First recall what the gradient descent consists of.
(b) Calculate u1 and u2.

Exercise 3 : The Rastrigin function

We consider the function f : [−π, π]2 → R de�ned by :

f(x, y) = 20 + (x2 − 10 cos(2πx)) + (y2 − 10 cos(2πy))

• (*) Is the function f convex or not ?

• (***) Find the solution(s) of the equation∇f(x, y) = 0.

• (*) We assume that this function is positive for all x, y. What is the global minimum of the function ?

• (*) We set u0 = (x, y)(0) = (2, 2), the initial point of the gradient descent with a learning rate ρ = 0.5.

(a) First recall what the gradient descent consists of.
(b) Calculate u1 and u2.

• Are we sure that the algorithm will reach the global minimum ? Why ?

Exercise 4 : A quadratic function

We consider the function f : R2 → R de�ned by :

f(x, y) = 7y2 + 4x2 − 5xy + 2x− 7y + 32.

• (*) Is the function f convex or not ?

• (*) Find the solution(s) of the equation∇f(x, y) = 0.

• (*) What is the global minimum of the function ?

• (*) We set u0 = (x, y)(0) = (1, 1), the initial point of the Newton’s Method

(a) First recall what is the Newton’s Method.
(b) Calculate u1 and u2.

Exercise 5 : A last function

We consider the function f : R2 → R de�ned by :

f(x, y) = 2x2 − 1.05x4 +
x6

6
+ xy + y2.

• (*) Calculate the Hessian Matrix.
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• (*) What are the quantities we have to calculate to prove that a 2× 2 matrix is PSD ? Calculate them.

• (*) We assume that the function f is non-negative and non-convex, i.e f(x, y) ≥ 0. Show that (0, 0) is a
solution of∇f(x, y) = 0.

• (*) What is the global minimum of the function ?

• (*) We set u0 = (x, y)(0) = (1, 1),the initial point of the gradient descent with a learning rate ρ = 0.5.

(a) First recall what is the gradient descent.
(b) Calculate u1 and u2.

• Are we sure that the algorithm will reach the global minimum ? Why ?

Exercise 6 : An application of Newton’s Method: The logistic regression

Let us consider X = (x1, x2, ..., xn) ∈ Rd and Y = (y1, y2, ..., yn) ∈ {0, 1}n be respectively the matrix of
the feature vector of n instances and their label.

The logistic regression is used as a binary classi�er (it can be extended to multiclass classi�cation problem)
where the classi�er returns the probability of an example to belong to class of reference (let say the class 1). An
example of classi�er trained using a logistic regression model is shown below.

The logistic regression is based on the following model:

ln

(
p(1 | X)

p(0 | X)

)
= w0 + w1x1 + w2x2 + ...+ wdxd.

In other words we estimate the log of the ratio of the probabilities of being in the class 1 with the one being in
the class 0. This model is called a LOGIT model. The quantity p(1 | X = x) is called the posterior probability of
being in the class 1, i.e. the probability for the example to be in the class 1.

• Using the above equation, give an expression of p(1 | X) which depends on the vector of parameters
w ∈ Rd+1. We will note g the obtained function, this function is called the logistic function.
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• Show that, for any w ∈ R, we have∇wg(w) = g(w)(1− g(w)).

• Study the convexity of function g.

• What about ln(g(w)) ?

A classical method to estimate the parameter of of a logistic regression model is to �nd the parameter that
maximize the likelihood of you data. The likelihood of an instance xi under this model is given by:

P (yi | xi, w) = g(w, xi)
yi(1− g(w, xi))1−yi .

The law is the same as the Bernoulli law B(p) with probability p = g(w, xi) where p is probability of being in
the class 1.

• We denote by L the likelihood of our date and ` the log-likelihood of the data. Determine the expression
of −`, the opposite of the log-likelihood.

• Study the convexity of such problem.

• Write the Newton’s method to solve the problem of minimization:

min
w∈Rd+1

− `(w,X,Y)

Exercise 7: The Backtracking Line Search

In class, we have seen that the e�ciency of the gradient descent algorithm depends on the choice of the
learning rate ρ. It its simple version the learning rate is �xed. In practice, the value of the learning rate is de-

creasing with respect to the number iteration, it can be ρk =
(
1

2

)k−1
.

Such way to choose the learning rate is called an inexact line search method, indeed, we are not sure to reach
the minimum of the function along the choosen direction of descent.

An other inexact but more reliable method to choose the value of the step ρk at iteration k is the Back-
tracking Line Search:

Given a direction of descent dx, two real numbers α ∈ [0, 0.5] and β ∈ (0, 1), we set ρ = βρ while:

f(x+ ρdx) ≥ f(x) + αρ〈∇f(x), dx〉.

The name backtracking comes from the fact that the value ρ is updated till the stopping condition holds.

• Suppose that the function f is strongly convex with mI ≤ ∇2f(x) ≤ MI . Show that for all x and dx we
have:

f(x+ ρdx) ≤ f(x) + ρ∇〈f(x), dx〉+ ρ2(M/2)〈dx, dx〉.

• Using the previous question, show that the backtracking stopping condition holds for:

0 < ρ ≤ −〈∇f(x), dx〉
M‖dx‖22

.
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Exercise 8: Minimizing a quadratic-linear fractional function:

We consider the function f : Rn → R de�ned by:

f(x) =
‖Ax− b‖22
cTx− d

,

where x is such that cTx+ d− 0. We will assume that the function is bounded below and that it admits only one
minimum. We further assume that A is full rank.

• Show that the minimizer x∗ of the function f has the form:

x∗ = x1 + tx2,

where x1 = (ATA)−1AT b, x2 = (ATA)−1c and t where t is such that:

t =
‖Ax∗ − b‖22
2(cTx∗ − d)

.

• Show that the value of t is given by solving a second order equation and �nd this value. We assume that
the obtained polynom has two roots.

Exercise 9: The optimal step algorithm: illustration of convergence

Let γ ∈ R∗+ consider the function f : R2 → R de�ned by:

fγ(x) =
1

2
(x21 + γx22).

We want to apply the algorithm of gradient descent with optimal step to �nd the minimum of the function f and
show that is algorithm converge.

• Say where the function reaches its minimum.

• Recall what is the the gradient descent algorithm with optimal step.

We initialize the algorithm at the point x(0) = (x
(0)
1 , x

(0)
2 ) = (γ, 1).

• Compute the value of x(1) and x(2) using the above algorithm.

• Show that, for all k ∈ N, the value of x(k) is given by:

x(k) =

((
γ − 1

γ + 1

)k
γ,

(
γ − 1

γ + 1

)k
(−1)k

)
.

• Prove that:

f(x(k)) =

(
γ − 1

γ + 1

)2k

f(x(0)).

• Conclude about the convergence.
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Technical Proofs and convergence

Exercise 1: An α− elliptical function

De�nition 1 Let V be a Rn− vectorial space. A function f : V 7→ R is said to be α−elliptical if f is continuously
di�erentiable on V and if it exists α > 0 such that:

〈∇f(v)−∇f(u), v − u〉 ≥ α‖v − u‖22, ∀u, v ∈ V.

• Using the above de�nition prove the following inequality:

f(v) ≥ f(u) + 〈∇f(u), v − u〉+ α

2
‖v − u‖22, ∀v, u ∈ V.

Hint: Introduce the function φ de�ned by φ(t) = f(u+ t(v−u)), t ∈ [0, 1] and compute f(v)−f(u). (Recall
that φ(x)− φ(y) =

∫ y
x ∇φ(z) dz)

De�nition 2 Let U an unbounded part of the space Rn. A function f : U 7→ R is said to be coercive if:

lim
‖uk‖→∞

f(uk) =∞.

• Using the previous result, show that an α−elliptical function is coercive.

Remark: The notion of coercivity (combined with the lower semi-continuity property) is used to prove that there exists
u ∈ U such that:

f(u) = inf
v∈U

f(v),

i.e. that a function f has a minimum.

Exercise 2: Gradient descent with optimal step

The aim of this exercise is to prove the following result:

Theorem 1 Let f : Rn 7→ R, a continuously di�erentiable and α−elliptical function. Then, the Gradient Descent
algorithm with Optimal step converges.

To prove this result, we will consider a the sequence (uk)k∈N and u the point where the function f reaches its
minimum. We aim to show that lim

k→∞
uk = u.

• Show that f(uk)− f(uk+1) ≥
α

2
‖uk − uk+1‖22.

• Explain why ‖uk − uk+1‖22 → 0

• Assume that ‖uk − uk+1‖22 → 0 implies ‖∇f(uk)−∇f(uk+1)‖22 → 0 and show that ‖∇f(uk)‖2 → 0.

• Conclude by showing that:
lim
k→∞

‖uk − u‖2 = 0.

10



Exercise 3: Convergence analysis of the gradient descent with a variable (or �xed) step

The aim of the exercise is to prove the following result:

Theorem 2 Let f : Rn 7→ R be an α−elliptical function such that ∀ u, v ∈ Rn:

‖∇f(v)−∇f(u)‖22 ≤M‖v − u‖2

and
〈∇f(v)−∇f(u), v − u〉 ≥ α‖v − u‖22,

where α,M > 0. Then the Gradient descent with a variable (or �xed) step ρ (or ρk) converges for:

0 < a ≤ ρ ≤ b < 2α

M

We will denote by u ∈ Rn the point for which the function f reaches its minimum.

• Find the value of γ such that ‖uk+1 − u‖22 ≤ γ2‖uk − u‖22.

• Give a condition on γ such that lim
k→∞

‖uk − u‖ = 0 and conclude.

Exercise 4: Properties of the Conjuguate Gradient Descent

Before starting this exercise, read in your slides what the method consists of. In the following we consider
A ∈ S++

n (R) (the set of symetric and PD matrices).
Try to prove, by induction, the following result:

Proposition 1 Let 1 ≤ k ≤ n be such that∇f(u0), ...,∇f(uk) are non zero. Then we have the following relations:

〈∇f(uk),∇f(ul)〉 = 0, ∀l = 0, ..., k − 1

and
〈Adk, dl〉 = 0, ∀l = 0, ..., k − 1.

The following Theorem is then a consequence of the above Proposition.

Theorem 3 The Conjuguate Gradient Descent converges in, at most, n iterations.

Proof 1 Indeed, we have shown that 〈∇f(uk),∇f(ul)〉 = 0, ∀l = 0, ..., n. So the set of derivatives ∇f(uk) is a
base of Rn, thus u can be expressed as linear combination of these derivatives. �
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Other exercises

Exercise 1: About the Gradient Descent with optimal step

Let A ∈ S++
n (R), i.e. a symetric and de�nite positive matrix. Let (uk)k∈N be a sequence obtained using

the gradient descent with optimal step applied to the quadratic function:

f(v) =
1

2
〈Av, v〉 − 〈b, v〉.

• Show that we have:

‖uk+1 − u‖2A ≤
(
1− λ1

λn

)2

‖uk − u‖2A,

where λ1 and λn are respectively the smallest and the largest eigenvalue of A.

The ratio λn
λ1

= Cond(A) is the condition number of the matrix A. It is used to measure how the error of
the output evolves when a small error or change is introduced in the input. A simple application or study can be
made by solving a linear system Au = b such as in Linear Regression.

Hint: We will assume that for any matrix A ∈ S++
n (R), there exists one and only one matrix B ∈ S++

n (R) such
that A = B2. This matrix is usually denoted by

√
A.

Exercise 2: Inequality of Kantorovich

The aim of this exercise is give a rate of convergence of the Gradient Descent with Optimal step that
depends on the Condition number of the matrix A.
Let (uk)k∈N be a sequence obtained using the gradient descent with optimal step applied to the quadratic function:

f(v) =
1

2
〈Av, v〉 − 〈b, v〉.

• Show that, for all u ∈ Rn:
‖u‖4

‖u‖2A‖u‖2A−1

≥ 4λ1λn
(λ1 + λn)2

.

Hint: Use the fact that: ‖u‖2A‖u‖2A−1 = ‖u‖21
t
A
‖u‖2tA−1 for any value of t > 0. You will also have to use the

inequality: (a+ b)2 ≥ 4ab.

• Using the previous result, show that:

‖uk+1 − u‖2A ≤
(
Cond(A)− 1

Cond(A) + 1

)2

‖uk − u‖2A,

where Cond(A) = λn
λ1

and λ1, λn have the same meaning as in the previous exercise.

Exercise 3: The Davidon-Fletcher-Powell Algorithm:

The Davidon-Fletcher-Powell Algorithm is described as follows:
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1. Choose S0 = I and a point u0 ∈ Rn

2. For k ≥ 0, do:

(a)
f(uk − ρkSk∇f(uk)) = inf

ρ>0
f(uk − ρSk∇f(uk)),

(b)
uk+1 = uk − ρkSk∇f(uk),

(c)

Sk+1 = Sk +
δkδ

T
k

δTk γk
−
Skγkγ

T
k Sk

γTk Skγk
.

(d) Until ‖∇f(uk+1)‖22 ≤ ε.

with the usual notations:

γk = ∇f(uk+1)−∇f(uk), δk = uk+1 − uk.

• Show that the Quasi-Newton’s Condition holds for all matrices Sk+1, i.e. we have:

Sk+1γk = δk.

• Let u ∈ Rn. Show that:

uTSk+1u =
(uTSku)(γ

T
k Skγk)− (γTk Sku)

2

γTk Skγk
+

(uT δk)
2

γTk , δk
,

γTk δk = ρk(∇f(uk)TSk∇f(uk)).

• Show that the matrices Sk are symetric and positive de�nite.

Optimization and Duality

Exercise : Exam 2017

Solve the following optimization problem:

min
x,y,z

4y − 2z

subject to 2x− y − z = 2

x2 + y2 = 1

Exercise : Exam 2018

Consider the following constrained optimizaton problem:

min
x1,x2

x1 − x2

subject to x21 + x22 − 2x2 = 0
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1. Try to represent the optimization problem in 2D-space.

2. Provide the Lagrangian formulation of this problem.

3. Deduce the Lagrange dual function associated to this problem.

4. Compute the optimum of this dual function.

5. Deduce the values that lead to an optimal solution in the primal formulation.

6. Check that the duality (weak or strong) holds. If you think you have a strong duality, explain why, other-
wise, try to provide a justi�cation explaining why this is not the case.

Exercise : The minimum including ball problem
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